• Title/Summary/Keyword: Ischemic-reperfusion injury

Search Result 146, Processing Time 0.031 seconds

Methanol Extract of Cassia mimosoides var. nomame Attenuates Myocardial Injury by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Lim, Sun-Ha;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Interruption of blood flow through coronary arteries and its subsequent restoration triggers the generation of a burst of reactive oxygen species (ROS), leading to myocardial cell death. In this study, we determined whether a methanol extract of Cassia mimosoides var. nomame Makino could prevent myocardial ischemia-reperfusion injury. When radical scavenging activity of the extract was measured in vitro using its ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radical quenching ability, the extract showed an activity slightly lower than that of ascorbic acid. Three days after oral administration of the extract (400 mg/kg/day) to rats, myocardial ischemia/reperfusion injury was generated by 30 min of ligation of the left anterior descending coronary artery (LAD), followed by 3 hr reperfusion. Compared with the vehicle-treated group, administration of the extract significantly reduced infarct size (IS) (ratio of infarct area to area at risk) in the extract-treated group by 28.3%. Reduction in the cellular injury was mediated by attenuation of Bax/Bcl-2 ratio by 33.3%, inhibition of caspase-3 activation from procaspase-3 by 40%, and subsequent reduction in the number of apoptotic cells by 66.3%. These results suggest that the extract attenuates myocardial injury in a rat model of ischemia-reperfusion by scavenging ROS, including free radicals, and consequently blocking apoptotic cascades. Therefore, intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic myocardial injury.

Attenuation of Brain Injury by Water Extract of Goat's-beard (Aruncus dioicus) and Its Ethyl Acetate Fraction in a Rat Model of Ischemia-Reperfusion

  • Han, Hyung-Soo;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Ischemic stroke constitutes about 80% of all stroke incidences. It is characterized by brain cell death in a region where cerebral arteries supplying blood are occluded. Under these ischemic conditions, apoptosis is responsible for the cell death, at least in part. Goat's-beard (Aruncus dioicus var. kamtschaticus) is a perennial plant that grows naturally in the alpine regions of Korea. In the present study, we first determined whether water extract of goat's-beard (HY1646) and some of its fractions prepared by partitioning with organic solvents could improve the viability of human hepatocellular carcinoma cells (HepG2) cultured under hypoxic condition by blocking apoptotic pathways. Based on the in vitro findings, we subsequently investigated whether HY1646 and the ethyl acetate fraction (EA) selected from cell culture-based screening could attenuate brain injury in a rat middle cerebral artery occlusion (MCAO) model of ischemia (2 hr), followed by 22 hours of reperfusion. The cell number was sustained close to that initially plated in the presence of HY1646 even after 24 hr of cell culture under hypoxic condition (3% $O_2$), at which time the cell number reached almost zero in the absence of HY1646. This improvement in cell viability was attributed to the delay in apoptosis, identified by the formation of DNA ladder in gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA) and butanol, EA was chosen for the animal experiments because EA demonstrated the best cell viability at the lowest concentration (10 ${\mu}g$/mL). HY1646 (200 mg/kg) and EA (10 and 20 mg/kg) significantly reduced infarct size, an index of brain injury, by 16.6, 40.0 and 61.0%, respectively, as assessed by 2,3,5-triphenyl tetrazolium chloride staining. The findings suggest that prophylactic intake of goat's beard might be beneficial for preventing ischemic stroke.

Effect Oxygen in Inflation Gas for Warm Ischemia-reperfusion Injury in the Lung of a Mongrel Dog (황견에서 폐장의 산소가 온열 허혈후 재관류 시폐손상에 미치는 영향)

  • 성숙환;김현조;김영태
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Background: Hyperinflation during lung ischemia has been known to improve pulmonary functions after reperfusion which may be exerted through a pulmonary vasodilation and avoidance of atelectasis by an increased surfactant release and been known whether the improvement of pulmonary function was the effect of hyperinflation itself or the oxygen content in inflation gas. Therefore we attempted to clarify the effect of hyperinflation with oxygen in pulmonary inflation gas during warm ischemia on pulmonary function after reperfusion to solve the problem of ischemia-reperfusion injury after lung transplantation. Material and Method: sixteen mongrel dogs were randomly divided into two groups: the left lung was inflated to 30-35 cm H2O with 100% oxygen in oxygen group and 100% nitrogen in nitrogen group. The inflated left lung was maintained with warm ischemia for 100 minutes. Arterial and mixed venous blood gas analysis and hemodynamics were measured before ischemia and 30, 60, 120, 180 and 240 minutes afer reperfusion. Lung biopsy was taken for the measurement of lung water content after the end of reperfusion. Result: In oxygen group arterial oxygen tension the difference of arterial and mixed venous oxygen tension and the difference of alveolar-arterial oxygen tension at 30-minute after reperfusion were not significantly different from those before ischemia and were stable during the 40hour reperfusion. However in nitrogen group these values were significantly deteriorated at 30-minute after reperfusion. there was no significant difference between two groups in hemodynamic data peak airway pressure and lung water content. Conclusion : The results indicated that the oxygenation one of the most important pulmonary functions was improved by pulmonary inflation with 100% oxygen during warm ischemia but the hemodynamics were not. Oxygen as a metabolic substrate during warm ischenia was believed to make the pulmonary tissues to maintain aerobic metabolism and to prevent ischemic damage of alveoli and pulmonary capillary.

  • PDF

Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin

  • Cho, Geum-Sil;Choi, In-Young;Choi, Yoo-Keum;Kim, Seul-Ki;Cai, Ying;Nho, Kwang;Lee, Jae-Chul
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2009
  • Polyethylene glycol-conjugated hemoglobin (PEG-Hb) has been proposed as a blood substitute for transfusion due to their plasma expansion and oxygen transport capabilities. The protective effect of PEG-Hb on cerebral hypoxic-ischemic injury was investigated in neonatal hypoxia model and adult rat focal cerebral ischemia model. As intravenously administered 30 min before the onset of hypoxia, PEG-Hb markedly protected cerebral hypoxic injury in a neonatal rat hypoxia model. A similar treatment of PEG-Hb largely reduced the ischemic injury ensuing after 2-h middle cerebral artery occlusion followed by 22-h reperfusion. Consistently, neurological disorder was significantly improved by PEG-Hb. The results indicate that the pharmacological blockade of cerebral ischemic injury by using PEG-Hb may provide a useful strategy for the treatment of cerebral stroke.

The Effects of Gonjadaesungchimjoongbang on Learning Ability and Memory after Ischemic Brain Injury in Rats (허혈성 뇌손상 백서에서 공자대성침중방(孔子大聖枕中方)이 학습과 기억에 미치는 영향)

  • Ryu, Su-Hyang;Chae, Jung-Won
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.40-48
    • /
    • 2011
  • Objectives: The purpose of this study is to evaluate the effect of Gonjadaesungchimjoongbang on spatial learning abilities and memories in ischemic brain injury. Methods: Rats were separated into three groups; (1) Normal, (2) Saline medication after ischemic brain injuries (control), (3) Gonjadaesungchimjoongbang medication after ischemic brain injuries (experiment). Ischemic brain injuries was induced by MCA occlusion and reperfusion. Morris water maze test was conducted for spatial learning and memory tests. Then, the change of BDNF in the hippocampus($7^{th}$, $14^{th}$ day) was examined by immunohistoche- mistry. Results: In Morris water maze test, spatial learning abilities and memory functioning were considerably increased in the experiment group as oppose to control group on $7^{th}$ and $14^{th}$ day(p<0.01). Moreover, immunohistochemistric response of BDNF in the hippocampus indicated that the more increased immune reaction was found in the experiment group as oppose to the control group on $7^{th}$ and $14^{th}$ day. Conclusions: Gonjadaesungchimjoongbang can improve the learning abilities and memories in ischemic brain injury.

Preparation of In Vivo Rat Lung Model for Ischemia-Reperfusion Injury (허혈 재관류 손상 실험의 쥐 생체 모델 작성)

  • Lee, Won-Jin;Park, Hui-Cheol;Hong, Gi-U
    • Journal of Chest Surgery
    • /
    • v.28 no.11
    • /
    • pp.963-966
    • /
    • 1995
  • Ischemia reperfusion injury occurs in various diseases. The role of oxygen free radicals in IR injury of the lung has been spotlighted and many studies have been performed. In this study, we tried to prepare a stable rat lung model for IR injury, focusing on surrounding conditions as hilar stripped left lung, clamped left pulmonary artery and bronchus,and declamped after determined period was passed, and right main pulmonary aretery was clamped. Arterial blood gas analyes were performed at 1, 10, 20, 30, minutes after reperfusion. Before clamping, PaO2 was 95 to 120 mmHg in all animals. There were six groups; Group I : temperature 15o C, and 120 minutes clamping, Group II: 20 oC, and 120 minutes clamping, Group III : 25 oC, and 120 minutes clamping, Group IV : 15oC, 90 minutes clamping, Group V : 20 oC, 90 minutes clamping,Group VI: 20 oC, 75 minutes clamping. Each groups contained 10 Sprague Dayley rats. The humidity was maintained 100 % as circulation imerged isotonic Hartmann`s solution of the pleural cavity. In group IV, V, and VI, PaO2 decreased significantly in all animals immediately after reperfusion, but 43 % survived till 10 minutes after reperfusion, it was 74.0$\pm$5.7, 73.3$\pm$10.8,and 88.2$\pm$17.7 mmHg. Pulmonary edema was observed histologically in 2/10 animals in group IV, 6/10 in group V , 3/10 in group VI, 9/10 in group I, and the other lungs showed all edema. We established a stable model by setting ischemic time,and temperature, between 75 to 90 minutes,15 to 20o C, and isotemperature Hartmann`s solution immersion of the pleural cavity.

  • PDF

The Neuroprotective Activities of the Sam-Hwang-Sa-Shim-Tang in the Transient Ischemic Model in Rats.

  • Kim, Min-Sun;Hwang, Young-Sun;Ryu, Jong-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.85-85
    • /
    • 2001
  • Sam-Hwang-Sa-Shim-Tang(SHSST), a traditional Chinese medicine, composed of Rhei rhizoma, Scutellaria radix, and Coptidis rhizoma were used in the several disease including hypertension, constipation, and hemorrhage. In the present study, we investigated the neuroprotective effects of SHSST and its ingredients on the ischemia/ reperfusion-induced brain injury was evaluated in the rat brain. Ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 120 min and reperfusion was continued for 22 h. SHSST (450 mg/kg), Rhei rhii oma (100 mg/kg), Coptidis rhizoma (100 mg/kg), and Scutellaria radik (100 mg/kg) were orally administered twice, promptly prior to reperfusion and 2 h after the repefusion. Total infarction volume in the ipsilateral hemisphere of ischemia/ reperfusion rats was significantly lowed by the treatments of SHSST (39.2%) and Scutellaria radix (66.5%). However, Coptidis rhizoma did not show any significant effects on the total infarct volume. The inhibiting effect of Scutellaria radix on the total infarct volume was more potent than that of SHSST. In addition, Scutellaria radix significantly inhibited myeloperoxidase (MPO) activity, an index of neutrophil infiltration in ischemic brain tissue. However, there was marked mismatch between total infarct volume and MPO activity in the Scutellaria radix-treated rats. Our findings suggest that Scutellaria radix as an ingredient of SHSST plays a protective role in ischemia-induced brain injury by inhibiting neutrophil infiltration. The effects of Rhei rhizoma on transient brain ischemia-induced neuronal injury are under study.

  • PDF

The Effects of Anti-histamine and Leukotriene Receptor Antagonist Against Ischemia-Reperfusion Injury (허혈-재관류 손상에서 히스타민 차단제와 류코트리엔 수용체 길항제의 효과 비교)

  • Cho, Hye-In;Chang, Hak;Kim, Suk-Wha
    • Archives of Reconstructive Microsurgery
    • /
    • v.21 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the role of mast cells and their product, histamine and leukotriene in ischemia-reperfusion injury. Methods: Forty Sprague-Dawley rats were divided into four groups. (Group I: Control group without ischemia, Group II: Normal saline with ischemia, Group III: Cimetidine with ischemia, Group IV: Zafirlukast with ischemia) Skin flap was elevated and ischemic insult was given by clamping the artery for 12 hours. Before reperfusion, the rats were treated with saline, cimetidine and zafirlukast. Flap survival was evaluated at 7 days. Neutrophil counts, mast cell counts were evaluated 24 hours after reperfusion. Results: Flap survival rate in the control group was 92.33%, whereas normal saline group had 37.34% survivals. Cimetidine and zafirlukast treated group showed significantly higher survival rates than normal saline group. The neutrophil and mast cell counts in cimetidine and zafirlukast treated group were significantly decreased than normal saline group. Cimetidine treated group showed higher survival rate and lower cell counts than zafirlukast treated group. Conclusion: The administration of cimetidine and zafirlukast can decrease neutrophils and mast cells caused by ischemia-reperfusion and increase flap survivals. It is suggests that antihistamine and leukotriene receptor antagonist have protective effect against ischemia-reperfusion injury to skin flap in rat.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Lee, Sun-Mee;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.199-199
    • /
    • 1998
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on retrograded aortic perfusion model. Hearts from Sprague-Dawley rats were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, 37) on a Langendorff apparatus. After equilibration, hearts were treated with ursodeoxycholic acid 10, 20, 40 and 800 M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. Following 25 min of global ischemia, ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular diastolic pressure, coronary flow and time to contracture formation) and biochemical (lactate dehydrogenase, LDH) endpoints were evaluated. In vehicle group, time to contracture formation (TTC) value was 19.5 min during ischemia, LVDP was 20.8 mmHg at the endpoint of reperfusion and LDH activity in reperfusate was 59.7 U/L. Cardioprotective effects of UDCA following ischemia/reperfusion consisted of a reduced TTC (EC$\_$25/ = 16.10 M), reduced LDH release and enhanced recovery of contractile function during reperfusion. Especially, the treatments of UDCA 80 M remarkably increased LVDP (68.1 mmHg) and reduced LDH release (33.2 U/L). Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage, in agreement with physiological and biochemical parameters.

  • PDF

An experimental study on the myocardial protection effect of the steroid mixed cardioplegic solution (Steroid를 첨가한 Cardioplegic solution의 심근보호효과에 관한 실험적 연구)

  • 유시원
    • Journal of Chest Surgery
    • /
    • v.17 no.4
    • /
    • pp.565-573
    • /
    • 1984
  • The increasing use of cardioplegic solution for the reduction of ischemic tissue injury requires that all cardioplegic solution be carefully assessed for any protective or damaging properties. This study describes functional assessment of the efficiency of steroid in cardioplegic solution by using a Langendorffs perfusion model. Isolated rat heart were subject to a 2 minute period of coronary infusion with the steroid mixed cold cardioplegic solution immediately before and also at the midpoint of a 60 minutes period of hypothermic [10\ulcorner\ulcorner] ischemic arrest. The result of this study were as follows: 1.Spontaneous heart beat after ischemic arrest occurred 14 second later Langendorffs reperfusion in the steroid mixed Young & GIK group and 16 second later in the control group. [Young & GIK without steroid] A good recovery state of spontaneous heart beat was shown in both groups. 2.The percentage of recoveries of heart rate during the 30 minute after postischemic Langendorffs reperfusion was; at first 5 minute 106.3\ulcorner.7% [P<0.05] in the steroid mixed Young & GIK group. This percentage of recovery of steroid mixed Young & GIK group was significantly greater than the control group during the first 5 minute course. 3.The percentage of recovery of coronary flow during the 30 minute after postischemic Langendorffs reperfusion was; at first 5 minute 101\ulcorner.2% in the steroid mixed Young & GI K group. This percentage of recovery of the steroid mixed Young & GIK group was not significantly than the control group during the first 5 minute.

  • PDF