• Title/Summary/Keyword: Ischemic brain damages

Search Result 21, Processing Time 0.028 seconds

Effects of Sebsaeng-eum(Shesengyin) on the NO Production of $C_6$ Glial Cell (섭생음이$C_6$ glial 세포의 NO 생성에 미치는 영향)

  • 임창용;김요한;박세홍;이소영;이상관;성강경
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.84-92
    • /
    • 2000
  • Objectives : The water extract of Sebsaeng-eum(SheShengYin) has been used for treatment of ischemic brain damage in oriental medicine, However, little is known about the mechanism by which the water extract of Sebsaeng-eum(SheShengYin) rescues brain cells from ischemic damages. Methods : To elucidate the protective mechanism on ischemic induced cytotoxicity, We investigated the regulation of LPS and PMA induced iNOS expression in $C_{6}$ glial cells. Results : LPS and PMA treatment for 48 h in $C_{6}$ glial cells markedly induced NO, but treatment of the cells with the water extract of Sebsaeng-eum(SheShengYin) decreased nitrite formation. In addition, LPS and PMA treatment for 48 h induced severe cell death in $C_{6}$ glial cells. However treatment of the cells with the water extract of Sebsaeng-eum(SheSheng Yin) did not induce significant changes compared to the control. LPS and PMA induced iNOS activation in $C_{6}$ glial cells caused chromosomal condensation and fragmentation of nuclei. Conclusions : Taken together, We suggest that the protective effects of the water extract of Sebsaeng-eum(SheShengYin) against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Effects of Seongpung-tang on the NO Production of Primary Microglial Cell (성풍탕이 미세아교세포의 NO 생성에 미치는 영향)

  • 성강경;임창용;이상관
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • The water extract of Seongpungtang(SPT) has commonly been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extract of SPT rescues brain cells from ischemic damage. To elucidate the protective mechanism of ischemic induced cytotoxicity, the regulation of Lipopolysaccharide (LPS) and PMA (phobol-12-myristate-13-acetate) induced iNOS expression in microglial cells was investigated. LPS and PMA treatment for 48 hr in microglial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of SPT decreased nitrite formation. In addition, LPS and PMA treatment for 48 hr induced severe cell death in microglial cells. However treatment of the cells with the water extract of SPT did not induce significant changes compared to the control cells. Furthermore, NO production was markedly decreased by treatment of nuclear factor kappa B(NF-kB) inhibitor, pyrrolidine dithiocarbamate(PDTC). According to the above results, it is suggested that the protective effects of the water extract of SPT against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Effects of Samul-tang on Nitric Oxide Induced-cytotoxicity in C6 Glial Cell (Nitric Oxide에 의해 유발된 C6 glial 세포독성(細胞毒性)에 대한 사물탕(四物湯)의 방어효과(防禦效果))

  • Kim, Do-Hwan;Kim, Seung-Mo;Cho, Han-Gook;Cha, Yong-Seok;Heo, Yun;Cho, Kwang-Ho;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.535-542
    • /
    • 2000
  • The water extracts of Samul-tang(SMT) has been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extracts of SMT rescues brain cells from ischemic damages. To elucidate the protective mechanism on ischemic induced cytotoxicity, I investigate the regulation of LPS and PMA induced iNOS expression in C6 glial cells. LPS and PMA treatment for 72 h in C6 glial cells markedly induce nitric oxide(NO), but treatment of the cells with the water extracts of SMT decrease. dose dependently nitrite formation. In addition, LPS and PMA treatment for 72 h induce severe cell death and LDH release in C6 glial cells. However treatment of the cells with the water extracts of SMT dose not induce significant changes compare to control cells. Furthermore, the protective effects of the water extracts of SMT is mimicked by treatment of $N^{G}MMA$, a specific inhibitor of NOS. LPS and PMA induced iNOS activation in C6 glial cells cause chromosomal condensation and fragmentation of nuclei by caspase activation. The treatment of the cells with the water extracts of SMT may suppress apoptosis via caspase inhibition by regulation of iNOS expression. Taken together, I suggest that the protective effects of the water extracts of SMT against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Cerebral Dysfunction Following Open-Heart Surgery. (개심술후 뇌기능장애에 대한 임상적 고찰)

  • 최수승
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.746-752
    • /
    • 1985
  • A retrospective clinical observation was made of 40 patients with postoperative cerebral dysfunction among 2634 patients who underwent open-heart operations in Severance Hospital. Yonsei University between 1962, the year the first successful open heart operation was done, and June 1985. Suspected causes of brain damage were reviewed. Brain CT findings were evaluated in 24 patients. There were 15 cerebral infarcts, 4 intracerebral bleedings, 3 ischemic brain damages, 1 infarction with intracerebral hemorrhage and 1 diffuse cortical atrophy from unknown cause. The most frequent site of cerebral infarction was the middle cerebral artery area with no predilection on the right of left.

  • PDF

Effects of Talmyung-san on the Cultured Rat Myocardiac Cell and Vascular Smooth Muscle Cell (탈명산(奪命散)이 배양심근세포(培養心筋細胞) 및 혈관평골근세포(血管平滑筋細胞)에 미치는 영향(影響))

  • Seong, Gang-Gyeong;Bag, Se-Hong
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2000
  • Objectives : Talmyung-san(TMS) has been used for treatment of brain diseases in Chinese traditional medicine. However, little is known about the mechanism by which TMS rescues brain cells from ischemic damages. To elucidate the protective mechanisms of TMS, we execute experiments. Methods : The effects of TMS on ischemia/reperfusion-induced cytotoxicity and generation of nitric oxide(NO) are investigated in primary neonatal myocardial cells and A7rS, aortic smooth muscle cell line. Results : Ischemia/reperfusion itself induces severe myocardial cell death in vitro. However, treatment of the cells with TMS significantly reduces both ischemia/reperfusion-induced myocardial cell death and LDH release. In addition, pretreatment of TMS before reperfusion recovers the lose of beating rates alter ischemia/reperfusion. For a while, the water extract of TMS stimulates myocardial cells to produce NO in a dose dependent manner and it protects the damage of ischemia/reperfusion-induced myocardial cells. Furthermore, the protective effects of the water extract of TMS is mimicked by treatment of sodium nitroprusside, an exogenous NO donor. NG-monomethyl-L-arginine (NGMMA), a specific inhibitor of nitric oxide synthase(NOS), significantly blocks the protective effects of TMS on the cells after ischemia/reperfusion. In addition, on ischemia the water extract of TMS induce NO in A7r5 cell. Conclusions : Taken together, we suggest that the protective effects of TMS against ischemia/reperfusion-induced myocardial damages may be mediated by NO production of myocardial and vascular smooth muscle cell during ischemic condition.

  • PDF

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

Effects of Jagamcho-tang on the C6 Glial Cell Injured by LPS Combined PMA (자감초탕(炙甘草湯)이 LPS와 PMA에 의해 손상된 C6 glial 세포에 미치는 영향)

  • Cho, Nam-Su;Rhyu, Jun-Ki;Lee, In;Shin, Sun-Ho;Moon, Byung-Soon;Na, Young-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.467-475
    • /
    • 2000
  • The water extracts of Jagamcho-tang has been used for treatment of arrhythmia and palpitation in oriental traditional medicine. Brain is provided with blood flow by heart. Jagamcho-tang has been studied on ischemia and infarction in heart. However, little is known about the mechanism by which the water extracts of Jagamcho-tang rescues brain cells from ischemic damages. To elucidate the protective mechanism on ischemic induced cytotoxicity, the effects of Jagamcho-tang on ischemia induced cytotoxicity and generation of nitric oxide(NO) are investigated in C6 glioma cells. Jagamcho-tang induce NO in a dose dependent manner up to 2.5mg/ml in C6 glioma cells. The pretreatment of Jagamcho-tang protect sodium nitroprusside(SNP) (2mM) induced cytotoxicity. This effect of Jagamcho-tang is mimicked by treatment by pretreatment of SNP($100{\mu}M$), an exogenous NO donor. NG-monomethyl-L-arginine($N^{G}MMA$), a specific inhibitor of nitric oxide synthase (NOS), significantly blocks the protective effects of Jagamcho-tang on cell toxicity by ischemia. In addition, lipopolysaccharide(LPS) and phorhol 12 myristate 13-acetate(PMA) treatment for 72h in C6 glial cells markedly induce NO, but treatment of the cells with the water extracts of Jagamcho-tang decrease nitrite formation in a dose dependent manner. In addition, LPS and PMA treatment for 72h induce severe cell death and LDH release into medium in C6 glial cells. However treatment of the cells with the water extracts of Jagamcho-tang dose not induce significant changes compare to control cells. Furthermore, the protective effects of the water extracts of Jagamcho-tang is mimicked by treatment of $N^{G}MMA$. Taken together, I suggest that the protective effects of the water extracts of Jagamcho-tang against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Physiological approach of CADASIL animal model and its predictable implication (CADASIL 동물모델의 생리학적 접근 및 연구적 가치의 예측)

  • Jung, Sung-Cherl;Ko, Eun-A
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.55-59
    • /
    • 2019
  • Cerebral vessels are functionally and structurally specialized to provide adequate blood flow to brain which shows high metabolic rates. Cerebral hemorrhage or ischemic infarction due to cerebrovascular injury or occlusion can cause the immediate brain damage, and if not treated rapidly, can lead to serious or permanent brain damages, and sometimes life-threatening. Unlike these popular cerebrovascular diseases, there are diseases caused by genetic problems. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of them. CADASIL does not show the high incidence, but it is considered to be significantly affected by regional obstructiveness such as islands and therefore, to be an important genetic disease in Jeju. This paper aims to summarize the possibility of animal model research that can provide preclinical data for CADASIL disease research and to evaluate its applicability in future research plans.

Effects of different parts of Angelica gigas Nakai on brain damages and neuronal death in transient middle artery occlusion/reperfusion-induced ischemic rats (허혈성 뇌졸중 흰쥐에서 당귀의 부위에 따른 뇌신경보호효과 비교 연구)

  • Shin, Yong-Joon;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.85-93
    • /
    • 2014
  • Objectives : We compared with the effects of different parts (root head, root body and hairy root) of Angelica gigas Nakai (Angelicae Gigantis Radix, AG) with on middle cerebral artery occlusion(MCAO)-induced ischemic rats, and on LPS-induced inflammatory response in BV2 microglia. Methods : The 30% ethanol and water extracts of different parts of AG were prepared. Each extract (50 and 100 mg/kg) was administrated intraperitoneally once in MCAO-induced ischemic rats. We measured infarction volumes by TTC staining, and investigated the expression of iNOS, Bax, Bcl-2 and caspase-3 by Western blot. BV2 cells were treated with each extract for 30 min, and then stimulated with LPS. The levels of NO was measured by Griess assay. The expression of iNOS, Cox-2 and proinflammatory cytokines ($TNF-{\alpha}$, $IL-1{\beta}$, and IL-6) were determined RT-PCR and Western blot. The phosphorylation of ERK1/2 and JNK MAPK was determined by Western blot. Results : Among different parts of AG, the 30% ethanol and water extracts of hairy root significantly decreased infarction volume in ischemic brains and inhibited the expression of iNOS, bax and caspase-3. The extracts of hairy root significantly inhibited LPS-induced production of NO, $TNF-{\alpha}$ and IL-6 in BV2 cells, and suppressed the expression of iNOS and COX-2. The hairy root extracts attenuated LPS-induced phosphorylation of ERK1/2 and JNK MAPK in BV2 cells. Conclusions : Our results indicate that the root hairy of AG has a good neuroprotective and anti-inflammatory effects in ischemic stroke compared to other parts.

Effect of Tooth-Cut Induced Dental Malocclusion on Mouse Model of Ischemic Stroke (생쥐의 하악 치아 절단으로 인한 부정교합이 뇌경색에 미치는 영향)

  • Lee, Young-Jun;Lee, Byoungho;Cho, Suin
    • Journal of TMJ Balancing Medicine
    • /
    • v.9 no.1
    • /
    • pp.4-11
    • /
    • 2019
  • Objectives: Although intraoral balancing appliance therapy has been used effective to several diseases, verification studies through cerebral diseases are poorly reported so far. Thus we investigated the effect of tooth-cut induced dental malocclusion against mouse model of ischemic stroke. Methods: Tooth-cut and 90 min middle cerebral artery occlusion (MCAO) were loaded to C57BL/6 male mice, and total infarct area, neurological deficit scores (NDS), histological change of hippocampal region were observed. Production levels of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in cerebral tissue were also measured. Results: The longer the tooth-cut period, the greater the area of cerebral infarction caused by MCAO, and NDS began to increase as the tooth was cut, and the results were more negative when MCAO was loaded. Histological change of hippocampal cells was significant when tooth-cut was maintained for 7 days. Those damages were thought to depend on the generation of ROS and iNOS in brain tissue. Conclusions: Since tooth-cut increased total area of cerebral infarction due to MCAO in mice, it is able to be confirmed that anomaly of the temporomandibular occlusion can affect neurological diseases.

  • PDF