• Title/Summary/Keyword: Ischemia-Reperfusion Injury

Search Result 282, Processing Time 0.029 seconds

Neuroprotective effects of Korean White ginseng and Red ginseng in an ischemic stroke mouse model

  • Jin, Myungho;Kim, Kyung-Min;Lim, Chiyeon;Cho, Suin;Kim, Young Kyun
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.275-282
    • /
    • 2022
  • Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

Novel Three-Dimensional Knitted Fabric for Pressure Ulcer Prevention: Preliminary Clinical Application and Testing in a Diabetic Mouse Model of Pressure Ulcers

  • Kim, Sungae;Hong, Jamin;Lee, Yongseong;Son, Daegu
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.275-284
    • /
    • 2022
  • Background Population aging has led to an increased incidence of pressure ulcers, resulting in a social burden and economic costs. We developed a three-dimensional knitted fabric (3-DKF) with a pressure-reducing function that can be applied topically in the early stages of pressure ulcers to prevent progression. Methods We evaluated the effects of the 3-DKF in a streptozotocin-induced diabetes mellitus pressure ulcer mouse model, and the fabric was preliminarily applied to patients. Twelve-week-old male C57BL/6 mice were used for the animal experiments. In the pressure ulcer mouse model, an ischemia-reperfusion injury was created using a magnet on the dorsa of the mice. Pressure was measured with BodiTrak before and after applying the 3-DKF to 14 patients at risk of sacral pressure ulcers. Results In the 3-DKF-applied mice group, the ulcers were shallower and smaller than those in the control group. Compared with the mice in the control group, the 3-DKF group had lower platelet-derived growth factor-α and neutrophil elastase expression, as parameters related to inflammation, and increased levels of transforming growth factor (TGF)-β1, TGF-β3, proliferating cell nuclear antigen, and α-smooth muscle actin, which are related to growth factors and proliferation. Additionally, typical normal tissue staining patterns were observed in the 3-DKF group. In the preliminary clinical analysis, the average skin pressure was 26.2 mm Hg before applying the 3-DKF, but it decreased to an average of 23.4 mm Hg after 3-DKF application. Conclusion This study demonstrated that the newly developed 3-DKF was effective in preventing pressure ulcers through testing in a pressure ulcer animal model and preliminary clinical application.

Arachidonate-induced Oxygen Radical Production and Cellular Damage in Ischemic-Reperfused Heart of Rat (허혈-재관류 적출심장에서 Arachidonic Acid에 의한 산소라디칼 생성 및 심근손상)

  • Lee, Yun-Song;Kim, Yong-Sik;Park, Seong-Ho;Myung, Ho-Jin;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.109-118
    • /
    • 1991
  • The present study was conducted to assess the possible contribution of arachidonic acid to generation of reactive oxygen metabolites and myocardial damage in ischemic-reperfused heart. Langendorff preparations of isolated rat heart were made ischemic by hypoperfusion (0.5 ml/min) for 45 min, and then followed by normal oxygenated reperfusion (7 ml/min). The generation of superoxide anion was estimated by measuring the SOD-inhibitable ferricytochrome C reduction. The myocardial cellular damage was observed by measuring LDH released into the coronary effluent. Oxygenated reperfusion following a period of ischemia produced superoxide anion, which was inhibited by both indomethacin (60 nmole/ml) and ibuprofen $(30\;{\mu}g/ml)$. Sodium arachidonate $(10^{-7}-10^{-2}{\mu}g/ml)$ administered during the period of oxygenated reperfusion stimulated superoxide anion production dose-dependently. The rate of arachidonate-induced superoxide generation was markedly inhibited by indomethacin, a cyclooxygenase inhibitor; nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, and by eicosatetraynoic acid (ETYA), a substrate inhibitor of arachidonic acid metabolism. The release of LDH was increased by Na arachidonate and was inhibited by superoxide dismutase. The release of LDH induced by arachidonic acid was also inhibited by indomethacin, NDGA and ETYA. In conclusion, the present result suggests that arachidonic acid metabolism is involved in the production of reactive oxygen metabolite and plays a contributory role in the genesis of reperfusion injuy of myocardium.

  • PDF

NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts

  • Thu, Vu Thi;Kim, Hyoung Kyu;Long, Le Thanh;Thuy, To Thanh;Huy, Nguyen Quang;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2016
  • Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating inflammation and fibrosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 ($10{\mu}mol/L$) treatment as experimental models. Addition of NecroX-5 significantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 ($TGF{\beta}1$) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, significantly increased production of tumor necrosis factor alpha ($TNF{\alpha}$), $TGF{\beta}1$, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of $TNF{\alpha}$, $TGF{\beta}1$, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the $TNF{\alpha}/Dcn/TGF{\beta}1/Smad2$ pathway.

Effects of Verapamil in Cardioplegic Perfusates on the Ischemic Myocardium in Isolated Rat Heart (흰쥐의 적출된 심장에서 Verapamil이 허혈성 심근에 미치는 효과)

  • Kim, Su-Cheol;Jo, Gyu-Seok;Park, Ju-Cheol;Yu, Se-Yeong
    • Journal of Chest Surgery
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 1997
  • Using isolated rat heart preparations, we observed the protective effe ts of verapamil cardioplegia on ischemic myocardial injury. Isolated rat hearts were subjected to global ischemia at $25^{\circ}C$ Twenty four isolated Sprague Dawley rat hearts underwent 30 minutes of the retrograde nonworking perfusion with Krebs-Henseleit buffer solution followed by $25^{\circ}C$ cardioplegic solution (St. Thomas'Hospital Cardioplegic Solution) for 60 minutes. Before ischemic arrest, rat hearts were treated with cold cardioplegic solution in control group (n=12) and cold cardioplegic solution with verapamil (1 mg/L) in experimental group (n=12). After 60 minutes of ischemia, hemodynamic and biochemical parameters such as heart rate, left ventricular pressure (LVP), + dp/dt max, coronary flow and creatine phosphokinase (CPK) were measured before giving cardioplegia and 30 minutes after reperfusion. Verapamil group exhibited greater recovery of heart rate, LVP, +dpldt max, coronary flow and CPK than control group (p < 0.05).

  • PDF

Effects of Medicinal Plant Extract on the Change of Cerebral Hemodynamic in Rats (약용식물 추출물이 흰쥐의 뇌혈류학적 변화에 미치는 영향)

  • Park, Sung-Jin;Hahm, Tae-Shik;Kim, Cheun-An
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.506-510
    • /
    • 2010
  • As an attempt to develop new functional health beverage by using medicinal herb, we investigated the effect of medicinal plant extract (MPE) on mean arterial blood pressure (MABP) and regional cerebral blood flow (rCBF) of rats. The changes of MABP and rCBF were determined by LDF methods. LDF allows for real time, noninvasive, continuous recordings of local CBF. MABP in MPE treated rats showed significant change of MPE 1.0 and 10.0 mg/kg. MPE i.v. administration showed significant increase of rCBF in a dose-dependent manner. Propranolol pretreated MABP showed significant change in the increase of MPE. rCBF of propranolol pretreated rats showed significant change from the i.v. injection concentration of 1.0 and 10.0 mg/kg. The ischemia/reperfusion induced oxidative stress may have contributed to cerebral damage in rats, and the present study provides clear evidence for the beneficial effect of MPE on ischemia induced brain injury. Also, the action mechanism in elevation effect of MPE on rCBF might be concerned with the role of $\beta$-adrenoceptor. The exact component and mechanism remains for the future study.

Inhibitory Effects of Epigallocatechin Gallate on Apoptosis in Human Vascular Endothelial Cells (혈관내피세포의 세포사멸작용에 대한 (-)Epigallocatechin Gallate의 억제효과)

  • Choi, Yean-Jung;Choi, Jung-Suk;Lee, Se-Hee;Lee, Yong-Jin;Kang, Jung-Sook;Kang, Young-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.672-678
    • /
    • 2002
  • Oxidative stress contributes to cellular injury following clinical and experimental ischemia/reperfusion scenarios. Oxidative injury can induce cellular and nuclear damages that result in apoptotic cell death. We tested the hypothesis that the catechin flavonoid of (-)epigallocatechin gallate, a green tea polyphenol, inhibits hydrogen peroxide ($H_2O$$_2$)-induced apoptosis in human umbilical vein endothelial cells. The effect of apigenin, a flavone found in citrus fruits, on apoptosis parameters was also examined. A 30 min pulse treatment with 0.25 mM $H_2O$$_2$ decreased endothelial cell viability within 24 hrs by > 30% ; this was associated with nuclear condensation and biochemical DNA damage consistent with programmed cell death. In the 0.25 mM $H_2O$$_2$apoptosis model, 50${\mu}{\textrm}{m}$ (-)epigallocatechin gallate markedly increased cell viability with a reduction in the nuclear condensation and DNA fragmentation. In contrast, equimicromolar apigenin increased cell loss with intense DNA laddering, positive nick-end labeling and Hoechst 33258 staining. Thus, polyphenolic (-)epigallocatechin gallate, but not apigenin flavone, qualify as an antioxidant in apoptosis models caused by oxidative stress. Further work is necessary for elucidating the anti-apoptotic mechanisms of polyphenolic catechins.

Tre Effect of UW Solution for Protection of Ischemic Injury in Free Myocutaneous Flaps of the Rabbit (가토 근피판에서 허혈성 손상 방지를 위한 UW 관류제 사용의 효과)

  • Suh Woo-Suk;Kwun Woo-Heung;Kim Sang-Woon;Lee Su-Jung;Kwun Koing-Bo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.9 no.1
    • /
    • pp.3-9
    • /
    • 1993
  • The benficial effects for perfusion in the preservation of free flaps have been controversial in the clinical and experimental field until now. This study was undertaken to observe the effect of UW solution. a recently developed. high molecular weight. organ perfusion solution. for protection of ischemic injury in normothermic free myocutaneous flaps. Forty rabbits were used in this sutdy. A 1x2x1cm sized gastrocnemius myocutaneous flap based on the feeding vessel from common femoral artery was made. The author set up the ischemic time for 12 hours in these flaps. The flap was washed out with normal saline(control grop, n=10), urokinase(comparative group I, n=10), UW solution before ischemic time(comparative group II, n=10) and UW solution before ischemic time and pentoxifylline before reperfusion(comparative group III, n=10). Afterthen, reperfusion was made for 12 hours. After this procedure, we checked the degree of ischemia and necrosis of myocutaneous flap by gross finding, electrical stimulation test of muscle, triphenyltetrazolium chloride staining and wet/dry weight ratio. The degree of necrosis of comparative group II and III were lesser than control and urokinase group in gross finding(p<0.05). In the electrical stimulation test of muscle, there was no statistical difference between control($1.76{\pm}1.01$) and urokinase($2.36{\pm}\1.02$) group however the muscular power of comparative group II($3.54{\pm}0.93$) and III($3.49{\pm}1.37gm/mm^2$) demonstrated significantly higher than control group(p<0.05). The ischemic findings were found in seven cases of control group and three cases of urokinase group but there were no ischemic findings in comparative group II and III in TIC stain(p<0.05). In the wet/dry weight ratio of flaps in order to evaluate the tissue edema. there was no statistical difference between control($4.55{\pm}0.29$) and III($3.75{\pm}0.48$) were scored significantly lesser than control and urokinase group (p<0.05). These results suggest that perfusion washout with UW solution improves the viability of normothermic free myocutaneous flap by inhibition of cellular swelling.

  • PDF

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.

Increased Expression of ATP-sensitive $K^+$ Channels Improves the Right Ventricular Tolerance to Hypoxia in Rabbit Hearts

  • Choi, Seong-Woo;Ahn, Jun-Seok;Kim, Hyoung-Kyu;Kim, Na-Ri;Choi, Tae-Hoon;Park, Sung-Woo;Ko, En-A;Park, Won-Sun;Song, Dae-Kyu;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.189-194
    • /
    • 2011
  • ATP-sensitive $K^+$ channels ($K_{ATP}$) are major component of preventing ischemia-reperfusion injury. However, there is little information regarding to the expressional difference of $K_{ATP}$ and its function between left and right ventricles. In this study, we measured the lactate dehydrogenase release of rabbit heart slices in vitro and determined the difference of the $K_{ATP}$ expression at the both ventricles by measuring the level of $K_{ATP}$-forming Kir6.2 (OcKir6.2) mRNA using in situ hybridization. The hearts were preconditioned with 15 min hypoxia and reoxygenated for 15 min before a hypoxic period of 60 min, followed by reoxygenation for 180 min. With hypoxic preconditioning (100% $N_2$) with 15 min, left ventricles (LV) showed higher release of LDH comparing with right ventricles (RV). Adding $K_{ATP}$ blocker glibenclamide ($10{\mu}M$) prior to a hypoxic period of 60 min, hypoxic preconditioning effect of RV was more abolished than LV. With in situ hybridization, the optical density of OcKir6.2 was higher in RV. Therefore, we suggest that different $K_{ATP}$ expression between LV and RV is responsible for the different response to hypoxia and hypoxic preconditioning of rabbit hearts.