• Title/Summary/Keyword: Irreversible reaction

Search Result 135, Processing Time 0.025 seconds

Heat transport characteristics by heat generation of electrochemical reactions in proton exchange membrane fuel cell (고분자전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3377-3382
    • /
    • 2007
  • In proton exchange membrane fuel cell, the heat is generated at the catalyst layer as result of exothermic electrochemical reaction. This heat increases temperature of gas diffusion layer and membrane whose conductivity is very sensitive to humidity, function of temperature. So it is very important to analysis heat transfer through fuel cell to maintain temperature at specified range. In this paper numerical simulation was done including reversible, irreversible, ionic resistance, water formation loss to source term of energy equation. Results show that irreversible and water formation loss contributes mainly to energy source term and as current density increases, all of energy source terms become increased and Nusselt number is increased as results of more heat generation. Particularly irreversible loss is found to be predominant among the all energy source and water formation at cathode channel influences the temperature distribution of fuel cell greatly.

  • PDF

Electrochemical Study on the 3-Phenyl-4-Nitrosydnone (3-Phenyl-4-Nitrosydnone의 전기화학적 연구)

  • Il-Kwang Kim;Youn-Geun Kim;Soon-Jong Han
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.195-202
    • /
    • 1988
  • An electrochemical reduction on the 3-phenyl-4-nitrosydnone in acetonitrile solution has been studied by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. Before the cleavage of phenyl-N single bond a irreversible electron transfer-chemical reaction(EC) mechanism of nitro functional group proceeded to form amino (or-hydroxylamino) group by multielectron transfer which is followed to give phenyl hydrazine by single electron transfer-chemical reaction at the 2nd and 3rd irreversible reduction wave of high negative potential region. The cathodic half-wave potentials shown to be shift negative due to inhibitory effect of cetyl-trimethyl ammonium bromide micelle while reversible anodic peaks on the 2nd and 3rd reduction waves in the presence of NaLS at high negative potential region.

  • PDF

Study on Electrochemical Properties of TBT(Tributyltin)

  • Park, Chil-Nam;Yang, Hyo-Kyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.173-179
    • /
    • 2001
  • The chemical behavior and properties of the redox state of environmental pollutants was investigated using electrochemical methods. The purpose was to measure the variations in the redox reaction of differential pulse polarograms and cyclic voltammograms. The results observed the influences on redox potential and current of various factors including concentration, temperature, salt, and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from reversible to irreversible processes. Also, it was mixing with reaction current controlled.

  • PDF

Chemical Properties of Co(II) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The chemical behavior and properties on the redox state of environmental pollutant has been investigated by electrochemical methods. We carried out to measure the variations in the redox reaction of differential pulse polarogram and cyclic voltammogram. The results observed the influences on redox potential and current of various factors with temperature and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from qusi-reversible to irreversible processes. Also, it was mixing with reaction current controlled. The bits-phenol A in the waste water was made to compound with cobalt ion and it take away from the separation into compound. The $Co(BPA)_2$ compound was not found to be dissociation in waste water. However, this compound is avery unstable(K=1.02) and for a while, it was to be a dissociation. Therefore, we believed that it was likely to a toxic substance.

Irreversibly Adsorbed Tri-metallic PtBiPd/C Electrocatalyst for the Efficient Formic Acid Oxidation Reaction

  • Sui, Lijun;An, Wei;Rhee, Choong Kyun;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • The PtBi/C and PtBiPd/C electrocatalysts were synthesized via the irreversible adsorption of Pd and Bi ions precursors on commercial Pt/C catalysts. XRD and XPS revealed the formation of an alloy structure among Pt, Bi, and Pd atoms. The current of direct formic acid oxidation (Id) increased ~ 8 and 16 times for the PtBi/C and PtBiPd/C catalysts, respectively, than that of commercial Pt/C because of the electronic, geometric, and third body effects. In addition, the increased ratio between the current of direct formic acid oxidation (Id) and the current of indirect formic acid oxidation (Iind) for the PtBi/C and PtBiPd/C catalysts suggest that the dehydrogenation pathway is dominant with less CO formation on these catalysts.

Electrochemical Behaviour of merdional tris(2-pyridinethiolato)Cobalt(Ⅲ) in Dimethylformamide Solution

  • 천정균;Chae, Hee K.;김용태;고용복;정옥상
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.496-500
    • /
    • 1997
  • Electrochemical behavior of mer-tris(2-pyridinethiolato)cobalt(Ⅲ) in dimethylformamide was studied on a platinum electrode by means of cyclic voltammetry, chronoamperometry, and chronocoulometry. It was found that the neutral complex molecule was electroactive between the potential region of 1.0 and - 1.2 V vs. a nonaqueous Ag/Ag+ electrode. The Co(Ⅲ) complex was reversibly reduced to Co(Ⅱ) species by one-electron transfer at about - 1.1 V, followed by an irreversible dissociation reaction. However, the oxidation process at around 0.8 V, was responsible for an irreversible two-electron transfer that occurred at a ligand site.

Electrocatalytic Reduction of Dioxygen at Glassy Carbon Electrodes with Irreversible Self-assembly of N-hexadecyl-N'-methyl Viologen

  • Lee, Chi-Woo;Jang, Jai-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.563-567
    • /
    • 1994
  • The electroreduction of dioxygen at glassy carbon electrodes with irreversible self-assembly of N-hexadecyl-N'-methyl viologen $(C_{16}VC_1)$ proceeds at potentials more positive than those where the reduction occurs at bare electrodes. The electrocatalyzed reduction takes place at potentials well ahead of those where the catalyst is reduced in the absence of dioxygen and the limiting currents observed at rotating disk electrodes did not deviate from the thoretical Levich line up to 6400 rpm, indicating that the electrocatalysis is extremely rapid. The rate constant for the heterogeneous reaction between $C_{16}V^+C_1$ immobilized on the electrode surface and $O_2$ in solution was estimated to be ca. $10^8\;M^{-1}s^{-1}$. The half-wave potential of dioxygen reduction was independent of solution pH.

Theoretical Investigation of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride: A Thermally Irreversible Photochromic System

  • 조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.308-313
    • /
    • 1998
  • A thermally irreversible photochromic system, 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride (MTMA), has been studied by semi-empirical molecular orbital methods. There are one pair of stable conformations for the closed-ring form and three pairs for the open-ring form, each pair consisting of two mirror-image conformations. Interconversion between the parallel and anti-parallel conformations of the open-ring form is restricted due to high energy barriers. Only the anti-parallel conformation appears to be responsible for photochromic cyclization. Thermostability of the compound is attributed to an avoided crossing at high energy in the ground states of the isomers, whereas the photoreactivity can be explained by the mutually connected excited singlet (S1) states of the isomers, forming a double well potential with a low energy barrier. The large solvent effects can be partly explained with the low dipole moment of the anti-parallel conformation of MTMA in the S1 state. The large variation of quantum efficiency suggests that excess vibronic energy can be utilized to provide the activation energy for the photochromic reaction.

Initial Electrochemical Insertion/Desertion of Lithium into Hard Carbon

  • Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Soo;Jin, Chang-Soo;Jin, Bong-Soo;Eom, Seung-Wook
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.36-40
    • /
    • 2000
  • The initial irreversible capacity (IIC) of a hard carbon during the charge/discharge reaction is strongly affected by both the initial irreversible capacity on the carbon surface $(IIC_S)$ and the initial irreversible lithium insertion into carbon $(IIC_B)$. The initial coulombic efficiency of the insertion and the desertion of lithium (IIE) can be used as a performance to classify $IIC_B$ of the carbon. The $IIC_B$ was proportional to the specific discharge capacity with a slope, $IIE^{-1}$ - 1. The IIE of hard carbon had four regions. $IIE_A$ for the region of 0~95 mAh/g of $Q_{D1}$ was 60.2%. $IIE_B$ and $IIE_C$ for the regions of 95~172 mAh/g and 172~308 mAh/g had 84.9% and 91.5%, respectively. $IIE_D$ was appeared above 308 mAh/g. But, the $IIE_D$ was reduced to 82.1% compared with $IIE_C$. These IIE might be corresponding to lithium desertion from carbon at the region of 0~172 mAh/g range, lithium desertion from the micropore of carbon at the region of 172~308 mAh/g range, and to the lithium stripping of the plated lithium for the region above 308 mAh/g, respectively.

  • PDF

Direct Calculation Method for Excited-state Diffusion-influenced Reversible Reactions with an External Field

  • Reigh, Shang Yik;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1015-1019
    • /
    • 2012
  • The direct calculation method is generalized to the excited-state diffusion-influenced reversible reaction of a neutral and a charged particle under an external field with two different lifetimes and quenching in three dimensions. The present method provides an alternative way to calculate the binding probability density functions and the survival probabilities from the corresponding irreversible results. The solutions are obtained as the series solutions by the diagonal approximation due to the anisotropy of the unidirectional external field. The numerical results are found to be in good agreement with those of the previous study [S. Y. Reigh et al. J. Chem. Phys. 132, 164112 (2010)] within a weak field limit. The solutions of two approaches show qualitatively the same overall behavior including the power laws at long times.