• Title/Summary/Keyword: Irregular motion

Search Result 245, Processing Time 0.027 seconds

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy (나선형 토모테라피에서 불규칙적인 호흡으로 발생되는 움직임에 의한 선량 오차에 대한 연구)

  • Cho, Min-Seok;Kim, Tae-Ho;Kang, Seong-Hee;Kim, Dong-Su;Kim, Kyeong-Hyeon;Cheon, Geum Seong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The purpose of this study is to analyze motion-induced dose error generated by each tumor motion parameters of irregular tumor motion in helical tomotherapy. To understand the effect of the irregular tumor motion, a simple analytical model was simulated. Moving cases that has tumor motion were divided into a slightly irregular tumor motion case, a large irregular tumor motion case and a patient case. The slightly irregular tumor motion case was simulated with a variability of 10% in the tumor motion parameters of amplitude (amplitude case), period (period case), and baseline (baseline case), while the large irregular tumor motion case was simulated with a variability of 40%. In the phase case, the initial phase of the tumor motion was divided into end inhale, mid exhale, end exhale, and mid inhale; the simulated dose profiles for each case were compared. The patient case was also investigated to verify the motion-induced dose error in 'clinical-like' conditions. According to the simulation process, the dose profile was calculated. The moving case was compared with the static case that has no tumor motion. In the amplitude, period, baseline cases, the results show that the motion-induced dose error in the large irregular tumor motion case was larger than that in the slightly irregular tumor motion case or regular tumor motion case. Because the offset effect was inversely proportion to irregularity of tumor motion, offset effect was smaller in the large irregular tumor motion case than the slightly irregular tumor motion case or regular tumor motion case. In the phase case, the larger dose discrepancy was observed in the irregular tumor motion case than regular tumor motion case. A larger motion-induced dose error was also observed in the patient case than in the regular tumor motion case. This study analyzed motion-induced dose error as a function of each tumor motion parameters of irregular tumor motion during helical tomotherapy. The analysis showed that variability control of irregular tumor motion is important. We believe that the variability of irregular tumor motion can be reduced by using abdominal compression and respiratory training.

Motion Analysis of a Very Large Floating Structure in Irregular Waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동 해석)

  • 신현경;이호영;임춘규;신현수;박인규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.63-68
    • /
    • 2000
  • A very large floating structure has rather small motion characteristics as to the whole body, while the motion at end part of such structure becomes largest due to the elastic motion of the structure. This paper presents on the theoretical result on the relative motion characteristics and green water phenomena of VLFS in waves This phenomena affect not only to strength of the structure but also the determination of depth of structure. To predict motion responses of structure in regular waves, the source-dipole distribution method and F.E.M is used By irregular wave results, the probability of occurrence of green water and response of the structure were calculated.

  • PDF

A Study on the Motion of a Single Point Moored Ship in Irregular Waves (불규칙파중 1점계류 선바의 거동해석에 관한 연구)

  • Lee, Seung-Keon;Jo, Hyo-Jae;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • The maneuvering equations of motion are derived to express the motion of a ship. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The linear wave forces whose periods are equal to those of incident waves and the nonlinear wave forces that make long period drift forces are computed for the simulation. The consideration of irregular waves and nonlinear wave force effects on the slew motion are carried on the analyzing the motion of ship in the regular and irregular waves.

Effects of the Multi-directional Irregular Waves on the Motion Responses and Tension Variations of ISSC-TLP (ISSC-TLP의 운동응답 및 변동장력에 미치는 다방향 불규칙파의 영향)

  • Lee, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.70-75
    • /
    • 2006
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the motion responses and tension variations of the ISSC-TLP. The numerical approach is based on a three-dimensional source distribution method and a spectral analysis technique of directional waves. The spectral description for the linear system of ISSC-TLP in the frequency domain is sufficient to completely define the motion responses and tension variations. This is because both the wave inputs and responses are stationary Gaussian random processes, of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Content Based Mesh Motion Estimation in Moving Pictures (동영상에서의 내용기반 메쉬를 이용한 모션 예측)

  • 김형진;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.35-38
    • /
    • 2000
  • The method of Content-based Triangular Mesh Image representation in moving pictures makes better performance in prediction error ratio and visual efficiency than that of classical block matching. Specially if background and objects can be separated from image, the objects are designed by Irregular mesh. In this case this irregular mesh design has an advantage of increasing video coding efficiency. This paper presents the techniques of mesh generation, motion estimation using these mesh, uses image warping transform such as Affine transform for image reconstruction, and evaluates the content based mesh design through computer simulation.

  • PDF

A Study on the Roll Motion of a Ship in a Transient Irregular Wave (설계불규칙파중에서 선박의 횡동요에 관한 연구)

  • Han, Ju-Chull;Lee, Seung-Keon;Ha, Tae-Phil
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.353-358
    • /
    • 2004
  • A transient irregular wave was designed based on ISSC spectrum The designed wave was generated in the towing tank and ,the roll motion of a model was measured A method to predict the maximum roll motion, expected in the short-term sea state, was investigated with comparison of the theoretical and experimental results.

Numerical Study on the Local Motion of an A-frame for Deep Sea ROV Mother Ship in Irregular Waves (심해잠수정 모선의 A-프레임 시간영역 국부운동해석)

  • Hong, Do-Chun;Lee, Pan-Mook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.105-108
    • /
    • 2003
  • The local motion at the top of an A-frame fixed on a research vessel for deep sea ROV floating in irregular waves is studied in the time-domain. The motion is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation.

  • PDF

Motion of a Very Large Floating Structure in Irregular waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동)

  • H. Shin;H.Y. Lee;C.G. Lim;H.S. Shin;I.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.75-81
    • /
    • 2000
  • Very large floating structures have rather small motion characteristics except their ends, where the motions become much larger due to the elastic motion of the structure. This paper presents the numerical predictions of hydroelastic behaviors of VLFS in irregular waves. To predict motion responses of structure in irregular waves, the source-dipole distribution method and finite element method is used.

  • PDF

A Study on the Assessment for the Auto-pilot System of a Ship in Waves (파랑중 선박의 자동조타 시스템의 평가에 관한 연구)

  • S.K. Lee;K.W. Lee;T.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 1998
  • There are two kinds of methods in the analysis of ship motion in irregular waves. The one is the spectral method in which the ship motion is assessed with spectral of irregular waves times R.A.O. of a ship. The other is, so called, time domain analysis, in which the irregular waves are used directly in the equation of ship motion to calculate the responses. In this paper, both methods are applied for the calculation of course keeping motion of a ship in irregular waves with auto-pilot control. And, the differences and useful1ness of the two methods in the assessment of auto-pilot system are compared.

  • PDF