• Title/Summary/Keyword: Irradiation hole

Search Result 84, Processing Time 0.025 seconds

The Cooling Characteristics for Circular Irradiation Hole under Suppressing Jet Flow at Guide Tube in HANARO (안내관 제트유동 억제시의 하나로 원형 조사공의 냉각특성)

  • Wu S. I.;Park P. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.208-213
    • /
    • 2004
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in- pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to calculate the hole size of a orifice inserted in the circular irradiation hole and to study the flow characteristics through the guide tube under reactor normal operation and loading the target. As results, the results show that the hole size of orifice was 31 mm of the inner diameter to suppress the guide tube jet flow and the coolant safely cooled the target of fission moly after inserting the orifice to the flow tube.

  • PDF

Photocurrent Multiplication Process in OLEDs Due to a Crystalline of Hole Injection Layer of Copper(II)-phthalocyanine and a Light Irradiation (유기발광소자내 정공주입층 Copper(II)-phthalocyanine의 결정 및 광원에 따른 Photocurrent 증폭 연구)

  • 임은주;박미화;윤순일;이기진;차덕준;김진태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.622-626
    • /
    • 2003
  • We report the electrical properties of organic light emitting diodes (OLEDs) depending on the crystal structure of hole injection layer of copper(II)-phthalocyanine(CuPc) and the light irradiation the carrier mobility of copper(II)-phthalocyanine(CuPc) of light source. OLEDs were constructed with indium tin oxide(ITO)/CuPc/triphenyl-diamin(TPD)/tris-(8-hydroxyquinoline)aluminum(Alq$_3$)/Al.Photocurrent multiplication of OLEDs was varied by the heat-treatment condition of CuPc thin film and the light irradiation.

Assessment of Nuclear Characteristics of NAA #1 Irradiation Hole in HANARO Research Reactor for Application of the $K_0$-NAA Methodology

  • Moon, Jong-Hwa;Kim, Sun-Ha;Chung, Yong-Sam;Dung, Ho-Mahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.566-573
    • /
    • 2002
  • Neutron activation analysis based on $textsc{k}$$_{o}$-standardization method# ($textsc{k}$o-NAA) is Com as one of the most remarkable progresses of the NAA with advantages of experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions, and suitability for computerization. This study was carried out to determine the reactor neutron spectrum parameters, i.e. $\alpha$ and f as the main factors of irradiation quality at NAA #1 irradiation hole on HANARO research reactor, to evaluate peak detection efficiency of the gamma-ray spectrometer for the use in the $textsc{k}$$_{o}$ experiments and to compare the measured concentration results with the certified values of some SRMs applying the experimentally determined to-parameters.ers.

The Cold Function Test of a Main Cooling Water System for a Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험장치의 주냉각수 계통 상온기능시험)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2505-2510
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor or a heavy water power reactor. When HANARO is normally operated, the fuel loaded in the irradiation hole has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. This paper describes the cold function test results of the MCWS. It was confirmed through the test results that the system met the design requirements under a cold operation condition.

  • PDF

A Study on Point Defect Induced with Neutron Irradiation (중성자 조사에 의해 생성된 점결함 연구)

  • 김진현;이운섭;류근걸;김봉구;이병철;박상준
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.165-169
    • /
    • 2002
  • Silicon wafer is very important accuracy make use semiconductor device substrate. In this research, for the uniformity dopant density distribution obtained to Neutron Transmutation Doping on make use Si in P Doping study work. In this research. we irradiated neutron on FZ silicon wafers which had high resistivity (1000~2000 ${\Omega}$cm), HANARO reactor was utilized resistivity changes due to observed, the generation of neutron irradiation on point defect analyzed, point defect on resistivity changes inquire into the effect. Before neutron irradiation theoretical due to calculated 5 ${\Omega}$-cm, 20.1 ${\Omega}$-cm for HTS hole and 5 ${\Omega}$-cm, 26.5 ${\Omega}$-cm, 32.5 ${\Omega}$-cm for IP3 hole. After neutron irradiation through SRP measurement the designed resistivities were approached, which were 2.1 H-cm for HTS-1, 7.21 ${\Omega}$-cm for HTS-2, 1.79 ${\Omega}$-cm for IP-1, 6.83 ${\Omega}$-cm for IP-2, 9.23 ${\Omega}$-cm for IP-3, respectively. Also after neutron irradiation resistivity changes due to thermal neutron dependent irradiation hole types free.

  • PDF

Development of Precision Drilling Machine for the Instrumentation of Nuclear Fuels (핵연료계장을 위한 정밀 드릴링장치 개발)

  • Hong, Jintae;Jeong, Hwang-Young;Ahn, Sung-Ho;Joung, Chang-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.223-230
    • /
    • 2013
  • When a new nuclear fuel is developed, an irradiation test needs to be carried out in the research reactor to analyze the performance of the new nuclear fuel. In order to check the performance of a nuclear fuel during the irradiation test in the test loop of a research reactor, sensors need to be attached in and out of the fuel rod and connect them with instrumentation cables to the measuring device located outside of the reactor pool. In particular, to check the temporary temperature change at the center of a nuclear fuel during the irradiation test, a thermocouple should be instrumented at the center of the fuel rod. Therefore, a hole needs to be made at the center of fuel pellet to put in the thermocouple. However, because the hardness and the density of a sintered $UO_2$ pellet are very high, it is difficult to make a small fine hole on a sintered $UO_2$ pellet using a simple drilling machine even though we use a diamond drill bit made by electro deposition. In this study, an automated drilling machine using a CVD diamond drill has been developed to make a fine hole in a fuel pellet without changing tools or breakage of workpiece. A sintered alumina ($Al_2O_3$) block which has a higher hardness than a sintered $UO_2$ pellet is used as a test specimen. Then, it is verified that a precise hole can be drilled off without breakage of the drill bit in a short time.

CHARACTERISTICS OF THE PNEUMATIC TRANSFER SYSTEM AND THE IRRADIATION HOLE AT THE HANARO RESEARCH REACTOR

  • Chung, Yong-Sam;Kim, Sun-Ha;Moon, Jong-Hwa;Kim, Hark-Rho;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.585-590
    • /
    • 2006
  • This paper describes the results of an irradiation test and the specifications of the pneumatic transfer system (PTS) in the NAA #3 irradiation hole at the HANARO research reactor, which was reinstalled after some modifications of the operation mode at the end of 2004. The outer and inner diameters of the PE transfer tube are 34.1 and 27.5 mm, respectively. PE rabbit was used for sample irradiation. The $N_2$ gas pressure of the PTS lines was adjusted to 0.75 bar. The average sending time to the reactor was $8.5{\pm}0.3$ s and the average receiving time back to the receiver was $3.2{\pm}0.2$ s. The internal and external temperature of the irradiation tube was measured in a range of 50 to $80^{\circ}C$ for a 40 s to 80 s irradiation time, respectively. The optimum irradiation time was estimated to be less than 80 s. The thermal, epithermal and fast neutron flux at 30 MW thermal power were $1.42{\pm}0.01{\times}10^{14},\;1.51{\pm}0.04{\times}10^{13}$ and $9.48{\pm}0.69{\times}10^{11} n{\cdot}cm^{-2}{\codt}s^{1-}$, respectively. The cadmium ratio was approximately 9.40. The data obtained will be applied to supplement user information and for reactor management.

3D Packaging Technology Using Femto Laser (팸토초 레이저를 이용한 3차원 패키징 기술)

  • Kim, Ju-Seok;Sin, Yeong-Ui;Kim, Jong-Min;Han, Seong-Won
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.190-192
    • /
    • 2006
  • The 3-dimensional(3D) chip stacking technology is one of the leading technologies to realize a high density and high performance system in package(SIP). It could be found that it is the advanced process of through-hole via formation with the minimum damaged on the Si-wafer. Laser ablation is very effective method to penetrate through hole on the Si-wafer because it has the advantage that formed under $100{\mu}m$ diameter through-hole via without using a mask. In this paper, we studied the optimum method for a formation of through-hole via using femto-second laser heat sources. Furthermore, the processing parameters of the specimens were several conditions such as power of output, pulse repetition rate as well as irradiation method and time. And also the through-hole via form could be investigated and analyzed by microscope and analyzer.

  • PDF

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.