• Title/Summary/Keyword: Irradiation defects

Search Result 142, Processing Time 0.031 seconds

Irradiation Induced Defects in a Si-doped GaN Single Crystal by Neutron Irradiation

  • Park, Il-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing electron magnetic resonance(EMR), Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of $2{\times}10^{17}$ neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, $A_1$(TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much broader or was much more broadened than that for the unirradiated one. The observed EMR center with the g value of 1.952 in a neutron irradiated Si-doped GaN may be assigned to a Si-related complex donor.

Characterization of Insulation Materials for Low Voltage Cables in a Nuclear Power Plant with ${\gamma}$-Ray Irradiation (방사선조사에 따른 원전 저압케이블용 절연재료의 특성분석)

  • 박정기;이우선;한재홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.397-404
    • /
    • 2001
  • This study describes the effect of γ-ray irradiation on the properties of insulation materials for low voltage cables in a nuclear power plant. The radiation effects were characterized by measuring OIT, FTIR, electrical properties of the irradiated specimens. As a result, they showed the decrease of OIT and the increase of chemical structural defects with the increase of γ-ray amount. Also, the electrical properties such as dielectrical constant, tan $\delta$ and current were changed by aging. These changes may come from the increase of chemical structural defects by $\delta$-ray irradiation.

  • PDF

Change in the Order of the Phase Transition in Triglycine Selenate Crystal

  • Song, Yong-Won
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.6-8
    • /
    • 2000
  • The specific heat of a partly deuterated triglycine selenage (DTGSe) crystal under $\gamma$-irradiation was measured. It was shown that $\gamma$-irradiation defects changed the thermodynamic behavior of DTGSe crystal in a small dose region. The order of the phase transition changed from the first to the second at D=0.3 MR.

  • PDF

Evolution of the Vortex Melting Line with Irradiation Induced Defects

  • Kwok, Wai-Kwong;L. M. Paulius;Christophe Marcenat;R. J. Olsson;G. Karapetrov
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Our experimental research focuses on manipulating pinning deflects to alter the phase diagram of vortex matter, creating new vortex phases. Vortex matter offers a unique opportunity for creating and studying these novel phase transitions through precise control of thermal, pinning and elastic energies. The vortex melting transition in untwinned YB $a_2$C $u_3$ $O_{7-}$ $\delta$/ crystals is investigated in the presence of disorder induced by particle irradiation. We focus on the low disorder regime, where a glassy state and a lattice state can be realized in the same phase diagram. We follow the evolution of the first order vortex melting transition line into a continuous transition line as disorder is increased by irradiation. The transformation is marked by an upward shift in the lower critical point on the melting line. With columnar deflects induced by heavy ion irradiation, we find a second order Bose glass transition line separating the vortex liquid from a Bose glass below the lower critical point. Furthermore, we find an upper threshold of columnar defect concentration beyond which the lower critical point and the first order melting line disappear together. With point deflect clusters induced by proton irradiation, we find evidence for a continuous thermodynamic transition below the lower critical point..

  • PDF

Liquid Crystal Alignment Effect on Polyimide Surface by Ion-beam Irradiation (이온빔을 이용한 폴리이미드 표면의 액정배향효과)

  • Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-330
    • /
    • 2008
  • It is widely investigated to liquid crystal (LC) alignment using non-contact alignment method such as ion-beam (IB) irradiation, UV alignment, and oblique deposition. Because conventional rubbing method has some drawbacks. These include defects from dust and electrostatic charges and rubbing scratch during rubbing process. In addition, rubbing method needs additional process to remove these defects. Therefore rubbing-free methods like ion-beam irradiation are strongly required. We studied LC alignment effect on poly imide surface by IB irradiation and electro-optical (EO) characteristics of twisted nematic liquid crystal display (TN-LCD). In this experiment, a good uniform alignment of the nematic liquid crystal (NLC) with the ion-beam exposure on the polyimide (PI) (SE-150 from Nissan Chemical) surface was observed. We also achieved low pretilt angle as a function of ion-beam irradiation intensity. In addition, it can be obtained the good EO properties of the IB-aligned TN-LCD on PI surface. Some other experiments results and discussion will be included in the poster.

  • PDF

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

Positron Annihilation Lifetime Study on the Proton-Irradiation BaSrFBr : Eu Film (양전자 소멸 수명 측정에 의한 양성자 조사된 BaSrFBr : Eu 박막 특성)

  • Im, Yu-Suk;Lee, Chong-Yong
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.307-311
    • /
    • 2010
  • Positron annihilation lifetime spectroscopy is applied to BaSrFBr : Eu film which is used for the phosphore layer, and afterwards the reliability and self-consistency of source corrections in the positron lifetime spectroscopy is investigated using a $^{22}Na$ positron emitter covered by thin foils. The positron lifetime showed no significant change through the various proton irradiation energies. It is unusual that the measurements of the defects indicate that most of the defects were likely to have been generated by X-ray radiation. This may have resulted from the Bragg peaks of the proton characteristics. The Bragg peak does not affect the defect signals enough to distinguish the lifetimes and intensities in a material that is includes multi-grains. The lifetime ($\tau_1$) associated with positron annihilations in the Ba, Br, and Eu of the sample was about 250 ps, and due to the annihilations at F-centers or defects from the irradiated protons in sample, the lifetime ($\tau_2$) was about 500 ps.

Investigation of X-ray-induced Defects on Metals and Silicon by Using Coincidence Doppler Broadening Positron Annihilation Spectroscopy

  • Lee, C.Y.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1895-1898
    • /
    • 2018
  • The mechanical properties of Al, Ti, Fe, and Cu metals p-type Si, and n-type Si were investigated by using coincidence Doppler broadening (CDB) positron annihilation spectroscopy. The samples in this experiment were irradiated by using X-rays at generating powers for up to 9 kW. The data taken after the irradiation showed all the characteristic features predicted from defects with vacancies. The S parameter values of the metals were generally less than those of semiconductors such as p-type Si and n-type Si. The relationship between n-type Si and p-type Si were more affected when n-type Si rather than p-type Si was irradiated with X-rays.