• Title/Summary/Keyword: Irradiation Treatment

Search Result 1,781, Processing Time 0.025 seconds

Sensitization of the Apoptotic Effect of ${\gamma}$-Irradiation in Genistein-pretreated CaSki Cervical Cancer Cells

  • Shin, Jang-In;Shim, Jung-Hyun;Kim, Ki-Hong;Choi, Hee-Sook;Kim, Jae-Wha;Lee, Hee-Gu;Kim, Bo-Yeon;Park, Sue-Nie;Park, Ok-Jin;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.523-531
    • /
    • 2008
  • Radiotherapy is currently applied in the treatment of human cancers. We studied whether genistein would enhance the radiosensitivity and explored its precise molecular mechanism in cervical cancer cells. After co-treatment with genistein and irradiation, the viability, cell cycle analysis, and apoptosis signaling cascades were elucidated in CaSki cells. The viability was decreased by co-treatment with genistein and irradiation compared with irradiation treatment alone. Treatment with only ${\gamma}$-irradiation led to cell cycle arrest at the $G_1$ phase. On the other hand, co-treatment with genistein and ${\gamma}$-irradiation caused a decrease in the $G_1$ phase and a concomitant increase up to 56% in the number of $G_2$ phase. In addition, co-treatment increased the expression of p53 and p21, and Cdc2-tyr-15-p, supporting the occurrence of $G_2/M$ arrest. In general, apoptosis signaling cascades were activated by the following events: release of cytochrome c, upregulation of Bax, down regulation of Bcl-2, and activation of caspase-3 and -8 in the treatment of genistein and irradiation. Apparently, co-treatment downregulated the transcripts of E6*I, E6*II, and E7. Genistein also stimulated irradiation-induced intracellular reactive oxygene, species (ROS) production, and co-treatment-induced apoptosis was inhibited by the antioxidant N-acetylcysteine, suggesting that apoptosis has occurred through the increase in ROS by genistein and ${\gamma}$-irradiation in cervical cancer cells. Gamma-irradiation increased cyclooxygenase-1 (COX-2) expression, whereas the combination with genistein and ${\gamma}$-irradiation almost completely prevented irradiation-induced COX-2 expression and $PGE_2$ production. Co-treatment with genistein and ${\gamma}$-irradiation inhibited proliferation through $G_2/M$ arrest and induced apoptosis via ROS modulation in the CaSki cancer cells.

Comparative Effect of ${\gamma}$-Irradiation and Ozone Treatment for the Improvement of Hygienic Quality of Dried-Angelica Keiskei Koidz Powder (신선초 분말의 위생화를 위한 오존처리와 감미선 조사와의 비교 효과)

  • 변명우;육홍선;김정옥;김종군;이현자
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.2
    • /
    • pp.111-116
    • /
    • 1997
  • For the purpose of improving hygienic quality of dried-Angelica Keiskei Koidz powder, the effect of ozone treatment and gamma irradiation on the microbial decontamination and physicochemical properties were investigated. Gamma irradiation at 5 to 7.5 kGy resulted in sterilizing total aerobic bacteria, molds and coliforms below detective levels, while ozone treatment for 8 hours up to 18 ppm did not sufficiently eliminate the total aerobic bacteria of the sample. The physicochemical properties of the sample were not changed by gamma irradiation up to 7.5 kGy, whereas, ozone treatment caused remarkable changes in pH, TBA value, chlorophyll, carotenoid and fatty acid compositions. Therefore, this investigation demonstrated conclusively that gamma irradiation was more effective than ozone treatment for decontaminating and sterilizing the dried-Angelica Keiskei Koidz powder, with minimal effect on the physicochemical properties analyzed.

  • PDF

Effects of Ozone Treatment and Gamma Irradiation on the Microbial Decontamination and Physicochemical Properties of Red Pepper Powder (고춧가루의 오염미생물 제거 및 이화확적 특성에 관한 오존처리와 감마선 조사의 영향)

  • 이성희;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.465-467
    • /
    • 1997
  • The comparative effects of ozone treatment and gamma irradiation on the sterilization, physicochemical properties and sensory quality of red pepper powder were investigated. As for the sterilization of microorganisms, 7.5~10 KGy of gamma irradiation completely eliminated the coliforms, yeast and molds, and total aerobic bacteria. On the other hand, ozone treatment failed to eliminate the highly contaminated microbial load, especially total aerobic bacteria. The physicochemical properties including capsaicin, capsanthin, browning, fatty acid compositions and sensory quality were not significantly changed by gamma irradiation up to 10 kGy, whereas ozone treatment caused significant changes in fatty acid compositions and destruction of natural pigments (p<0.05). The above results led us to conclude that gamma irradiation was more effective than ozone treatment for the sterilization and maintenance of physicochemical and sensory qualities of red pepper powders.

  • PDF

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

A Study on the Treatment of Nondegradable Pollutants by Ultrasonic Irradiation (초음파에 의한 난분해성물질 처리에 관한 연구)

  • 손종열;모세영;문경환
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.102-106
    • /
    • 1995
  • This study was performed to examine factors affecting the decompostion of nondegradable polluants(trichloroethylene(TCE), phenol) using ultrasonic irradiation. The TCE and phenol, which are major hazard compounds causing environmental pollution, were not decomposable pollutants by conventional treatment. The results show that the oxidation and reduction reaction of ultrasound produced $H_2O_2$, $H^+$ and $OH^-$ radical, which decomposed pollutants of TCE and phenol in water. It was confirmed that the ultrasonic irradiation showed an excellent removal efficiency for the nondegradable pollutants than any other processes, utilized in the treatment of organic compounds in the industrial wastewater. Conclusively, these results suggest that ultrasonic irradiation may be highly useful for the treatment of wastewaters contaminated organic pollutants, which is difficult to treat economically by conventional process.

  • PDF

Treatment of non-degrable Organic Pollutants in Aqueous by ultrasonic irradiation (초음파에 의한 수중의 난분해성 오염물질 처리)

  • 손종열;모세영;손진석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.76-84
    • /
    • 1995
  • This study was performed to examine the factors influenced on the decomposition of nondegradable organic pollutants( Tricholoroethylene,Benzene ) in aqueous by ultrasonic irradiation. The TCE( Tricholoroethylene ) and Benzene are major hazard compounds causing environmental Pollution and not decomposable substances by conventional treatment. The results shows that the oxidation and reduction reaction of ultrasonic Irradiation was formed the H$_{2}$O$_{2}$ , H$^{+}$ and OH$^{-}$ radical, and then theses was decomposed pollutants of TCE and Benzene in aqueous. We were conformed that the ultrasonic irradiation was excellent in removal efficiency of the nondegradable organic substances any other than processes and utilized the treatment of organic compounds in the industrial wastewater. Conclusively, these results suggest that ultrasonic irradiation may be extremely useful for the treatment of wastewater contaminated organic pollutants, which is difficult to treat economically by conventional treatment.

  • PDF

Thoracic Re-irradiation for Locally Recurrent Lung Cancer

  • Aktan, Meryem;Kanyilmaz, Gul;Koc, Mehmet;Aras, Serhat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.5041-5045
    • /
    • 2016
  • Background: Patients with recurrent or progressive lung cancer experience a significant symptom burden, negatively affecting quality of life and reducing life expectancy. Thoracic re-irradiation can be used for palliative treatment to relieve symptoms or as a curative treatment. Methods: Using patient charts, we identified and reviewed 28 cases that had received palliative thoracic re-irradiation for recurrent lung cancer. Results: Before re-irradiation, 32% of patients had stage III non-small cell lung cancer and six had small cell lung cancer. The median interval between treatments was 18.7 months. Median follow-up was 31.2 months from the initial radiotherapy and 5 months after re-irradiation. A better performance status before re-irradiation (<80 vs >80, p=0.09) and a lower overlap 90% isodose (<70 vs >70, p=0.09) showed trends toward improved survival. Grade 1-2 toxicity from re-irradiation was recorded in 12/28 patients, and no grade 3 or 4 acute toxicity was encountered. Conclusion: The role of palliative treatment in survival is not clear but it can provide symptomatic relief in patients, with no high grade toxicity. Further studies with greater patient numbers and longer follow-up times should facilitate determination of the role of this treatment in toxicity and effects on survival.

Effects of Ionizing Energy and Ozone Treatments on the Microbial Decontamination and Physicochemical Properties of Aloe Powders and Bee Pollen

  • Yook, Hong-Sun;Chung, Young-Jin;Kim, Jung-Ok;Kwon, Oh-Jin;Kim, Sung;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • The comparative effects of gamma irradiation an ozone treatment on the microbiological and physicochemical qualities were investigated for the improvement of hygienic quality of aloe powder and bee pollen. Gamma irradiation at 7.5~10kGy could reduce total aerobic bacteria, molds and coliforms below detection levels, but ozone treatment up to 18 ppm for 8hr was not sufficient to eliminate the microorganisms from aloe powder and bee pollen. The physicochemical properties such as fatty acid an amino acid compositions, mineral content, TBA value, barbaloin and pigment contents were not significantly changed by gamma irradiation, whereas ozone treatment caused significant changes in fatty acid composition, lipid oxidation and destruction of barbaloin and natural pigments.

  • PDF