• Title/Summary/Keyword: Irradiation Dose

Search Result 1,987, Processing Time 0.029 seconds

The Effects of Gamma Irradiation on the Microbiological, Physicochemical and Sensory Quality of Peach (Prunus persica L. Batsch cv Dangeumdo) (감마선 조사에 의한 복숭아의 미생물학적, 이화학적 품질 및 관능적 품질 변화)

  • Kim, Mi-Seon;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.364-371
    • /
    • 2009
  • The effect of gamma irradiation ($0.5{\sim}2$ kGy) on the microbiological, physicochemical and sensory properties of peaches was investigated during 6 day storage at $20{\pm}3^{\circ}C$. Total aerobic bacteria, yeasts and molds significantly decreased with increasing dose level. In Hunter's color values, L-values decreased and a- and b-values increased with increment of irradiation dose level. Hardness significantly decreased with increment of irradiation dose level whereas pH, soluble solid, and total polyphenol contents increased with increment of irradiation dose level. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging activity of irradiated peach was higher than that of control and its activity increased with increment of irradiation dose level. Vitamin C content was not affected by irradiation. In sensory test, overall acceptabilities of irradiated samples were higher than those of control. These results suggest that gamma irradiation on peach was effective for microbiological safety while improving the antioxidant activity, but not good on color and texture of peach.

Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin (감마선조사에 의한 돼지 피부장애에 cyclooxygenase-2의 발현변화)

  • Kim, Joong Sun;Park, Sunhoo;Jang, Won Seok;Lee, Sun Joo;Lee, Seung Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • The basic concepts of radiation-induced skin damage have been established, the biological mechanism has not been studied. In this study, we have examined the effects of gamma rays on skin injury and cyclooxygenase(COX)-2 expression. Gamma irradiation induced clinicopathological changes in a dose- and time-dependent manner in mini-pig skin. The histological changes were consistent with the changes in gross appearance at 12 weeks after irradiation. After three days' irradiation, apoptotic cells in the basal layer were found more frequently in irradiated skin than in normal skin, with the magnitude of the effect being dose-dependent. The thickness of the epidermis transiently increased 3 days after irradiation, and then gradually decreased, although changes in the epithelial thickness of the irradiated field were not observed with irradiation doses over 50 Gy. In the epithelium, there was an initial degenerative phase, during which the rate of basal cell depletion was dependent on the radiation dose (20-70 Gy). One week after irradiation, COX-2 expression was mostly limited to the basal cell layer and was scattered across these cells. High COX-2 expression was detected throughout the full depth of the skin after irradiation. The COX-2 protein is upregulated after irradiation in mini-pig skin. These histological changes associated with radiation exposure dose cause the increased COX-2 expression in a dose-dependent fashion.

The Signaling of UV-induced Apoptosis in Melanocytes

  • Kim, Dong-Seok;Kim, Sook--Young;Park, Kyoung-Chan
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.217-220
    • /
    • 2002
  • Ultraviolet B (UVB) radiation may activate or deteriorate cultured human epidermal melanocytes, depending on the doses and culture conditions. In this study, we examined whether apoptosis of melanocytes can be induced by physiologic doses of UVB irradiation. PI staining for DNA condensation and flow cytometric analyses demonstrated the apoptotic cell death of melanocytes after UVB irradiation. The level of p53 and Bax revealed a dose-dependent increase with increasing dose of UVB, but the level of Bcl-2 remained unchanged. Confocal microscopic examination showed that Bax moved trom a diffuse to a punctate distribution after UVB irradiation. However, there were no changes in the pattern of Bcl-2. We next examined the downstream targets of apoptosis. Our results showed that a precursor form of caspase-3 disappeared with increasing doses of UVB. We also observed cleavage of poly(ADP-ribose) polymerase (PARP) after UVB irradiation. In addition, UVB irradiation resulted in a remarkable activation of c-Jun N-terminal kinase (JNK). These results indicate that UVB may induce apoptosis via JNK activation in human melanocytes.

  • PDF

Effect of Electron Beam Irradiation on Microbial Growth and Qualities in Astragalus membranaceus

  • Jin, You-Young;Shin, Hee-Young;Ku, Kyoing-Ju;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.176-179
    • /
    • 2006
  • Electron beam irradiation was applied to examine the microbial growth and qualities of vacuum-packaged Astragalus membranaceus, a Korean medicinal herb. Samples were irradiated at dose of 2, 4, 8, 12, and 16 kGy, respectively. Microbiological data on A. membranaceus showed that populations of total bacteria, yeast and mold, total coliforms were significantly reduced with increase of irradiation dose. Populations of microorganisms in A. membranaceus were decreased by 2-3 log cycles at 8 kGy irradiation. Color measurements showed that electron beam treatment caused negligible changes in Hunter color L, a, and b values of A. membranaceus. Sensory evaluations showed that there were no significant changes among the samples. These results suggest that electron beam irradiated A. membranaceus have better microbial safety and qualities, compared with the non-irradiated control.

AN EXPERIMENTAL STUDY ON THE CHANGE OF BONE MINERAL METABOLISM AFTER IRRADIATION (방사선조사가 골무기질함량에 미치는 영양에 관한 실험적 연구)

  • Chin Hae Yun;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.53-66
    • /
    • 1988
  • Irradiation is widely used for the treatment of malignant diseases, and possibly cause the osteoporosis. The bone densitometry and bone scintigraphy are valuable when used to monitor the patients longitudinally to access the progression of osteoporosis and risk of osteoradionecrosis. To evaluate the osteoporosis after irradiation of cobalt-60 gamma ray on the lumbar spines of New Zealand white rabbits, bone densitometry by dual photon absortiometry and bone scintigraphy were performed weekly. The decrease of bone density began at the first week after irradiation, and were in the nadir at 4-6th week. The osteoblastic activity measured by bone scintigraphy decreased in the first week, and was in the nadir at 4-6th week. The severity of these changes were related to the radiation dose. In conclusion, the osteoporosis before presentation of the osteoradionecrosis can be developed at low dose irradiation and confirmed by bone densitometry, bone scanning, and histopathology.

  • PDF

Single and Fractionated Irradiation of Mammary Tumor of Rat (백서 유방암의 단일 및 분할 조사시 방사선치료 효과)

  • Ha, Sung-Whan;Huh, Seung-Jae;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.173-175
    • /
    • 1984
  • The therapeutic effect of mammary breast cancer of rat (Sprague Dawley) was estimated by single and 5 fractionated irradiation of $Co^{60}-\gamma-ray$. Response rates over 50a were 20, 43, 67, $80\%$ respectively by single dose irradiation of 800, 1,200, 1,600, 2,000 rad, and 20,38, 57, $88\%$ by 5 fractionated irradiation of 1,400, 2,100, 2,800, 3,500 rad. $50\%$ tumor control dose$(TCD_{50})$ were 1,282rad, 2,312rad respectively with single and fractionated irradiation.

  • PDF

Characteristics of Heat Shrinkable High Density Polyethylene Crosslinked by ${\gamma}$-Irradiation

  • Kang, Phil-Hyun;Nho, Young-Chang
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • The effects of ${\gamma}$-irradiation on the crosslinking of high density polyethylene (HDPE) was investigated for the purpose of obtaining a suitable formulation for heat shrinkable materials. In this study the HDPE specimens were prepared by blending with cross linking agents and pressed into a 0.2 mm sheet at 18$0^{\circ}C$. ${\gamma}$-irradiation was conducted at 40 to 100 kGy in nitrogen. The heat shrinkable property and thermal mechanical property of the HDPE sheets have been investigated. It was found that the degree of crosslinking of the irradiated HDPE samples were increased with irradiation dose. Compared with the HDPE containing triallylisocyanurate, the HDPE containing trimethylol propane triacrylate shows a slight increase in crosslinking density. The heat transformation and dimension change of HDPE decreased with increasing radiation dose. The heat shrinkage of the samples increased with increasing annealing temperatures. The thermal resistance of HDPE increased upon the crosslinking of HDPE.

  • PDF

AN ELECTRON MICROSCOPIC STUDY OF THE IRRADIATION EFFECTS ON THE RAT PAROTID INTERCALATED DUCT CELLS (방사선조사가 타액선 도관세포에 미치는 영향에 관한 전자현미경적 연구)

  • Choi Won Jai;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.137-147
    • /
    • 1988
  • This study was designed to investigate the effects of irradiation on the salivary ductal cells, especially on the intercalated ductal cells of the rat parotid glands. For this study, 36 Sprague-Dawley strain rats were irradiated on the head and neck region with absorbed dose of 15Gy by Co-60 teletherapy unit, Picker's model 4M60. The conditions irradiated were that field size, SSD, dose rate and depth were 12×5㎝m, 50㎝, 222 Gy/min. and 1㎝. respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12 hours and 1, 3, 7 days after the irradiation and the changes of the irradiated intercalated duct cells of the parotid glands were examined under the light and electron microscope. The results were as follows: 1. Under the light and electron microscope, the nucleus, mitochondria and secretory granules showed severe changes in the early stage after irradiation and the most severe cellular de- generations were observed 2 hours after irradiation, but the repair processes began from 6 hours after irradiation. 2. Under the electron microscope, loss of the nuclear membranes, derrangement of the chromosomes, swelling and destruction of the secretory granules, and widening of the intercellular spaces were observed after irradiation. 3. Under the light microscope, atrophy and irregular proliferation of the ductal cells, cuboidal metaplasia, hyperchromatism, and the construction or obstruction of the lumen were observed after irradiation.

  • PDF

Evaluation of Dose Distribution Using a Radiophotoluminescence Glass Dosimeter in Biobeam8000 Gamma Irradiation Device (유리선량계를 이용한 Biobeam8000 감마선 조사장치의 선량평가)

  • Shin, Sang-Hun;Lee, Sung-Hyun;Son, Ki-Hong;Lee, Hyun-Ho;Kim, Kum-Bae;Jung, Hai-Jo;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.198-205
    • /
    • 2011
  • Gamma irradiator is widely used for cell, animal experiment, irradiation for blood, dose measurement, and education. Biobeam8000 gamma irradiator (STS Steuerungstechnik &. Strahlenschutz GmbH, Braunschweig, Germany, Cs137, 81.4 TBq) that KIRAMS (Korea Institute of Radiological and Medical Science) has is a irradiation device that enables to be used in large-capacity of 7.5 L and extensive area. Cs-137 source moves range of 24 cm back-and-forth in a regular cycle in beaker for uniform irradiation and a beaker that puts a specimen like existing radiation irradiator such as Gammacell3000 rotates $360^{\circ}$ during irradiation. Precise dose information according to the location of radiation source would be needed because of the movement of radiation source, whereas radiation could be uniformly irradiated in comparison with existing gamma irradiator. In this study, dose distribution of the inside beaker located in Biomeam8000 gamma irradiator was measured using glass dosimeter, and dose evaluation and distribution regarding dose linearity and dose reproducibility were implemented based on measurement results. This aims to show guideline for efficient use of irradiator based on measurement result when doing experiment or radiation exposure.

Effects of Low Dose ${\gamma}$ Radiation on the Radiosensitivity of Soybean(Glycine max L.) Plant (저선량 ${\gamma}$선 조사가 대두 식물체의 방사선 감수성에 미치는 영향)

  • Kim, Jae-Sung;Chae, Sung-Ki;Back, Myung-Hwa;Kim, Dong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.324-327
    • /
    • 2000
  • Soybean (Glycine max L. cv. Hwangkeum) seeds were irradiated with the dose of $0{\sim}20$ Gy to investigate the effect of the low dose ${\gamma}-ray$ radiation on the early growth and resistance to subsequent high dose of radiation. Germination rate was not enhanced in the seeds irradiated with low dos ${\gamma}-ray$ but plant height and fresh weight increased in the low dose irradiation group. The optimal radiation dose for the growth increasing was 8 Gy in soybean plant. Growth inhibition of soybean plants by high dose radiation was noticeably reduced by pre-irradiation of low dose radiation, Resistance to subsequent high dose of radiation was effective in 8 Gy and 20 Gy irradiation group.

  • PDF