• Title/Summary/Keyword: Irradiation Design

Search Result 290, Processing Time 0.022 seconds

Development of long-term irradiation testing technology at HANARO

  • Choo, Kee Nam;Yang, Seong Woo;Park, Seng Jae;Shin, Yoon Taeg
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.344-350
    • /
    • 2021
  • As the High Flux Advanced Neutron Application Reactor (HANARO) has been recently required to support new R&D relevant to future nuclear systems requiring a much higher neutron fluence, the development of irradiation capsule technology for long-term irradiation testing was performed in three steps (3, 5, 10 dpa). At first, several design improvements of a standard capsule were suggested based on a failure analysis of the capsule and successfully applied for irradiation testing at HANARO at up to eight reactor operation cycles equivalent to 3 dpa. Based on a schematic stress analysis of the vulnerable parts of the previous capsule, an optimized design of the capsule was made for 5 dpa irradiation. The newly designed capsule was safely out-pile tested up to 450 days, which was equivalent to 5 dpa irradiation in the reactor. The test results were submitted to the Reactor Safety Review Committee of HANARO and irradiation testing for 5 dpa was approved. The capsule was also successfully out-pile tested to evaluate the possibility of irradiation testing for 10 dpa. For a higher neutron fluence exceeding 10 dpa, new capsule technologies, including a new capsule that has a different bottom design and neutron flux boosting capsule, were also suggested.

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao;Liu, Jiusong;Yu, Hongxing;Tian, Changqing;Huang, Shanfang;Deng, Jian;Chai, Xiaoming;Liu, Yu;He, Xiaoqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2094-2106
    • /
    • 2022
  • The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Electrical and Optical Properties in Transparent Conducting Oxides: Effect of Ultra Violet Irradiation

  • So, Byung-Soo;Hwang, Jin-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.65-69
    • /
    • 2007
  • A design of experiments was applied in order to investigate the effect of processing variables in UV irradiation on the electrical/optical properties in indium-zinc oxide thin films, The processing variables, equivalently input variables are listed as UV irradiation time, oxygen flow rate, and chamber pressure. The statistical significance of Ultra Violet (UV) treatment was confirmed using a paired-t test. The full factorial $2^3$ design was employed to determine significant main and interaction effects in UV irradiation process. The chamber pressure and the interaction between UV irradiation time and $O_2$ flow rate were found to be statistically significant at the significance level of 0.1. Furthermore, the optimized approach was proposed in achieving the improved conductivity after UV irradiation.

  • PDF

Design of a New Capsule Controlling Neutron Flux and Fluence and Temperature of lest Specimen

  • Choo, Kee-Nam;Kang, Young-Hwan;Taiji Hoshiya;Motoji Niimi;Takashi Saito
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.148-157
    • /
    • 1997
  • A new capsule that has a unique structure in which the test environments including neutron flux and fluence, and irradiation temperature can be controlled precisely during irradiation, was conceptually designed. The capsule structure and instrumentation were successfully designed according to the JMTR's standard procedures of capsule design. Based on the target irradiation, the details of the irradiation such as neutron fluence and irradiation temperature ore calculated and the related capsule safety was evaluated. In addition, the effects of design parameters including the changes in inner-capsule configuration, heater capacity, and Helium gas pressure on the specimen temperature were analyzed with a computer program. Through these thermal and strength evaluations, this capsule was proved to be safe during the irradiation in the JMTR.

  • PDF

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

Photo-oxidation and Dyeability of Poly Ketone by UV/O3 Irradiation (자외선/오존 조사에 의한 Poly Ketone의 광산화와 염색성)

  • Kim, Min-Su;Jang, Yong-Joon;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • Poly ketone (PK) was photo-oxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PK film was investigated by the measurement of reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance, particularly at the wavelength of 380nm, decreased with increasing UV energy. And the irradiation produced nano-scale roughness on the surface uniformly. The maximum surface roughness increased from 25.3nm for the unirradiated sample to 104.9nm at the irradiation of $42.4J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The surface energy of PK film increased from $43.3mJ/m^2$ for the unirradiated sample to $71.9mJ/m^2$ at the irradiation of $31.8J/cm^2$. The zeta potential of the UV-irradiated PK decreased with increased UV energy and the dyeability to cationic dyes increased accordingly, resulting from the photochemically introduced anionic and dipolar dyeing sites on the PK films surfaces.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

A Concise Design for the Irradiation of U-10Zr Metallic Fuel at a Very Low Burnup

  • Guo, Haibing;Zhou, Wei;Sun, Yong;Qian, Dazhi;Ma, Jimin;Leng, Jun;Huo, Heyong;Wang, Shaohua
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.734-743
    • /
    • 2017
  • In order to investigate the swelling behavior and fuel-cladding interaction mechanism of U-10Zr alloy metallic fuel at very low burnup, an irradiation experiment was concisely designed and conducted on the China Mianyang Research Reactor. Two types of irradiation samples were designed for studying free swelling without restraint and the fuel-cladding interaction mechanism. A new bonding material, namely, pure aluminum powder, was used to fill the gap between the fuel slug and sample shell for reducing thermal resistance and allowing the expansion of the fuel slug. In this paper, the concise irradiation rig design is introduced, and the neutronic and thermal-hydraulic analyses, which were carried out mainly using MCNP (Monte Carlo N-Particle) and FLUENT codes, are presented. Out-of-pile tests were conducted prior to irradiation to verify the manufacturing quality and hydraulic performance of the rig. Nondestructive postirradiation examinations using cold neutron radiography technology were conducted to check fuel cladding integrity and swelling behavior. The results of the preliminary examinations confirmed the safety and effectiveness of the design.

A Miniaturized Catadioptric Laser-Irradiation-Precision Test System

  • Liu, Huan;Sun, Hao;Wang, Chunyan
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.