• Title/Summary/Keyword: Irradiation Defect

Search Result 95, Processing Time 0.02 seconds

The investigation of the carbon on irradiation hardening and defect clustering in RPV model alloy using ion irradiation and OKMC simulation

  • Yitao Yang;Jianyang Li;Chonghong Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2071-2078
    • /
    • 2024
  • The precipitation of solutes is a major cause of irradiation hardening and embrittlement limiting the service life of reactor pressure vessel (RPV) steels. Impurities play a significant role in the formation of precipitation in RPV materials. In this study, the effects of carbon on cluster formation and irradiation hardening were investigated in an RPV alloy Fe-1.35Mn-0.75Ni using C and Fe ions irradiation at 290 ℃. Nanoindentation results showed that C ion irradiation led to less hardening below 1.0 dpa, with hardening continuing to increase gradually at higher doses, while it was saturated under Fe ion irradiation. Atom probe tomography revealed a broad size distribution of Ni-Mn clusters under Fe ion irradiation, contrasting a narrower size distribution of small Ni-Mn clusters under C ion irradiation. Further analysis indicated the influence of carbon on the cluster formation, with solute-precipitated defects dominating under C ion irradiation but interstitial clusters dominating under Fe ion irradiation. Simulations suggested that carbon significantly affected solute nucleation, with defect clusters displaying smaller size and higher density as carbon concentration increased. The higher hardening at doses above 1.0 dpa was attributed to a substantial increase in the number density of defect clusters when carbon was present in the matrix.

Atomistic simulations of defect accumulation and evolution in heavily irradiated titanium for nuclear-powered spacecraft

  • Hai Huang;Xiaoting Yuan;Longjingrui Ma;Jiwei Lin;Guopeng Zhang;Bin Cai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2298-2304
    • /
    • 2023
  • Titanium alloys are expected to become one of the candidate materials for nuclear-powered spacecraft due to their excellent overall performance. Nevertheless, atomistic mechanisms of the defect accumulation and evolution of the materials due to long-term exposure to irradiation remain scarcely understood by far. Here we investigate the heavy irradiation damage in a-titanium with a dose as high as 4.0 canonical displacements per atom (cDPA) using atomistic simulations of Frenkel pair accumulation. Results show that the content of surviving defects increases sharply before 0.04 cDPA and then decreases slowly to stabilize, exhibiting a strong correlation with the system energy. Under the current simulation conditions, the defect clustering fraction may be not directly dependent on the irradiation dose. Compared to vacancies, interstitials are more likely to form clusters, which may further cause the formation of 1/3<1210> interstitial-type dislocation loops extended along the (1010) plane. This study provides an important insight into the understanding of the irradiation damage behaviors for titanium.

Defect structure classification of neutron-irradiated graphite using supervised machine learning

  • Kim, Jiho;Kim, Geon;Heo, Gyunyoung;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2783-2791
    • /
    • 2022
  • Molecular dynamics simulations were performed to predict the behavior of graphite atoms under neutron irradiation using large-scale atomic/molecular massively parallel simulator (LAMMPS) package with adaptive intermolecular reactive empirical bond order (AIREBOM) potential. Defect structures of graphite were compared with results from previous studies by means of density functional theory (DFT) calculations. The quantitative relation between primary knock-on atom (PKA) energy and irradiation damage on graphite was calculated. and the effect of PKA direction on the amount of defects is estimated by counting displaced atoms. Defects are classified into four groups: structural defects, energy defects, vacancies, and near-defect structures, where a structural defect is further subdivided into six types by decision tree method which is one of the supervised machine learning techniques.

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

A Study on Point Defect Induced with Neutron Irradiation (중성자 조사에 의해 생성된 점결함 연구)

  • 김진현;이운섭;류근걸;김봉구;이병철;박상준
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.165-169
    • /
    • 2002
  • Silicon wafer is very important accuracy make use semiconductor device substrate. In this research, for the uniformity dopant density distribution obtained to Neutron Transmutation Doping on make use Si in P Doping study work. In this research. we irradiated neutron on FZ silicon wafers which had high resistivity (1000~2000 ${\Omega}$cm), HANARO reactor was utilized resistivity changes due to observed, the generation of neutron irradiation on point defect analyzed, point defect on resistivity changes inquire into the effect. Before neutron irradiation theoretical due to calculated 5 ${\Omega}$-cm, 20.1 ${\Omega}$-cm for HTS hole and 5 ${\Omega}$-cm, 26.5 ${\Omega}$-cm, 32.5 ${\Omega}$-cm for IP3 hole. After neutron irradiation through SRP measurement the designed resistivities were approached, which were 2.1 H-cm for HTS-1, 7.21 ${\Omega}$-cm for HTS-2, 1.79 ${\Omega}$-cm for IP-1, 6.83 ${\Omega}$-cm for IP-2, 9.23 ${\Omega}$-cm for IP-3, respectively. Also after neutron irradiation resistivity changes due to thermal neutron dependent irradiation hole types free.

  • PDF

Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

  • Jung, Hong-Moon;Lee, Jeong-Eun;Lee, Seoung-Jun;Lee, Jung-Tae;Kwon, Tae-Yub;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.34.1-34.8
    • /
    • 2018
  • Background: Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect. Methods: A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 ㎍/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations. Results: BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals. Conclusion: The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models.

The Oxygen Potential of Urania Nuclear Fuel During Irradiation

  • Park, Kwang-Heon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.72-77
    • /
    • 1998
  • A defect model for UO$_2$ fuel containing soluble fission products was devised based on the defect structure of pure and doped uranias. Using the equilibrium between fuel solid-solution and fission-products and the material balance within the fuel, a tracing method to get the stoichiometry change of urania fuel with burnup was made. This tracing method was applied to high burnup urania fuel and DUPIC fuel. The oxygen potential of urania fuel turned out to increase slightly with burnup. The stoichiometry change was calculated to be negligible due to the buffering role f Mo. The oxygen potential of DUPIC fuel out to be sensitive to the initial chemical state of Mo in the fuel.

  • PDF

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

Thermal-annealing behavior of in-core neutron-irradiated epitaxial 4H-SiC

  • Junesic Park ;Byung-Gun Park;Gwang-Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.209-214
    • /
    • 2023
  • The effect of thermal annealing on defect recovery of in-core neutron-irradiated 4H-SiC was investigated. Au/SiC Schottky diodes were manufactured using a 4H-SiC epitaxial wafer that was neutron-irradiated at the HANARO research reactor. The electrical characteristics of their epitaxial layers were analyzed under various conditions, including different neutron fluences (1.3 × 1017 and 2.7 × 1017 neutrons/cm2) and annealing times (up to 2 h at 1700 ℃). Capacity-voltage measurements showed high carrier compensation in the neutron-irradiated samples and a recovery tendency that increased with annealing time. The carrier density could be recovered up to 77% of the bare sample. Deep-level-transient spectroscopy revealed intrinsic defects of 4H-SiC with energy levels 0.47 and 0.68 eV below the conduction-band edge, which were significantly increased by in-core neutron irradiation. A previously unknown defect with a high electron-capture cross-section was discovered at 0.36 eV below the conduction-band edge. All defect concentrations decreased with 1700 ℃ annealing; the decrease was faster when the defect level was shallow.