• Title/Summary/Keyword: Iron-manufacture.smelting technology

Search Result 2, Processing Time 0.016 seconds

A Study on Iron-manufacture Method through Analysis of Ironware excavated from Byeokje, Goyang (고양 벽제 제철 유구 출토 철기의 분석을 통한 제철방법 연구)

  • Lim, Ju-Yeon;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2012
  • The ironware production technology is a measure to fathom the society's level of development in time. To understand iron-manufacure methods in the past, various investigations on the fine structures and additions of ironware remains and Iron ingot have been conducted in a way of natural science. This study metallurgically reclassifies remains excavated in iron-manufacture remains located in Beokje, Goyang, which are thought to be in time of Goryeo Dynasty, and draws an inference from the element analysis on the iron-manufacture and smelting technology. Iron ingot samples with a cast iron structure are divided into those with a white cast iron structure and those with a grey cast iron rich in P. The P content of grey cast iron appeared to be the result of adding a flux agent like lime, iron ingot and carbon steel iron ingot with a cast iron structure excavated in the area is regarded as pig iron which was made without a refining process. In this study it seems that two methods of making ironware were used in the area; one is the method of making ironware by pouring cast iron to the casting, and the other is the method of making carbon steel through the refinement of pig iron. It appears that highly even steel structure of carbon steel and a small amount of MnS inclusion are very similar with that of the modern steel to which Mn is artificially added. Nevertheless, these data alone cannot be used to determine the source of Mn in the carbon steel of the excavated from the iron-manufacture remains, which raises the need for further studies on the source and the possibility of carbon steel via the iron-manufacture process of cast iron.

Studies in Iron Manufacture Technology through Analysis of Iron Artifact in Han River Basin during the Proto-Three Kingdoms

  • Kim, Soo-Ki
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.9-22
    • /
    • 2012
  • The most widely excavated iron artifacts used as weapons or farm tools from central southern regions of Korea were subjects of non-metallic inclusion analysis through metallographic examination, microhardness measurement, and scanning electron microscopy with energy dispersive X-ray spectroscopy. Through metallographic interpretation and study of the analyzed results, the steel manufacturing and iron smelting using heat processing in the iron artifacts excavated from the central southern region of the ancient Korean peninsula was studied, and the analysis of the non-metallic inclusions mixed within the metallic structures was interpreted as the ternary phase diagram of the oxide to infer the type of iron ores for the iron products and the temperature of the furnace used to smelt them. Most of the ancient forged iron artifacts showed $Al_2O_3/SiO_2$ with high $SiO_2$ contents and relatively low $Al_2O_3$ contents for iron ore, indicating t hat for $Al_2O_3$ below 5%, it is presumed that magnetic iron ores were reduced to bloom iron (sponge iron) with direct-reduction process for production. The temperature for extraction of wustite for $Al_2O_3$ below 1% was found to be $1,020{\sim}1,050^{\circ}C$. Considering the oxide ternary constitutional diagram of glassy inclusions, the steel-manufacturing temperature was presumed to have been near $1,150{\sim}1,280^{\circ}C$ in most cases, and minimum melting temperature of casting iron part excavated in Daeseong-ri. Gyeonggi was near $1,400^{\circ}C$, and it is thought that hypoeutectic cast iron of about 2.3% carbon was casted and fragility of cast iron was improved by decarburizing in solid state.