• Title/Summary/Keyword: Iron salt

Search Result 144, Processing Time 0.028 seconds

High Dietary Salt Intake Increase of Gastric Ulcer in Stressed Rats (침수.속박스트레서에 의한 위궤양 모델 쥐에서 식염의 섭취 수준이 궤양 발병 및 회복에 미치는 영향)

  • 이상아
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.920-929
    • /
    • 1997
  • This study examined the effect of dietary salt levels on the incidence and cure of gastric ulcer in rats. Two sets of experiment were conducted . In the first experiment, the rats were divided into 3 groups. The 3 groups were fed 0%, 4%, and 8% NaCl diets respectively for 20days. The rats were given water -immersion restraint stress at the end of the dietary period , and sacrificed. The ulcer index by histological test was higher in rats fed the 8% NaCl diet than those in the other groups. The hexosamine and glutathione levels were significantly lower in the rats fed the 8% NaCl diet. Hematocrit and total iron binding capacity(TIBC) showed lower values caused by bleeding of gastric mucosa. The second experiment was designed to determine the effect of soldium concentration on the cure of gastric ulcer . As the gastric ulcer was recovered, ulcer length was gradually deceased in the control group but not changed in the 8% NaCl diet group. The gastric hexosamine and hepatic glutathione were increased in the control group but decreased in the 8% NaCl diet group. The hematologic indices of stressed rats showed the same tendency. As a result, dietary salt per se did not cause gastric ulcer . Once an ulcer is formed by stress or any other factor, higher levels of dietary salt may be detrimental to gastric mucosa, thereby delaying the healing of the ulcer. It is recommended that dietary salt intake be reduced in stress-prone people.

  • PDF

Characterization of Individual Atmospheric Particles, Collected in Susan, Korea, Using Low-Z Electron Probe X-ray Microanalysis (Low-Z Electron Probe X-ray Microanalysis 분석법을 이용한 해안인근 지역의 대기입자 분석)

  • 김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2003
  • A single particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA) was applied to characterize atmospheric particles collected in Busan, Korea, over a daytime period in Dec. 2001. The ability to quantitatively analyze the low-Z elements, such as C, N, and 0, in microscopic volume enables the low-Z EPMA to specify the chemical composition of individual atmospheric particle. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, calcium carbonate, iron oxide, sodium chloride, sodium nitrate, ammonium sulfate, and titanium oxide were identified. In the sample collected in Busan, sodium nitrate particles produced as a result of the reaction between sea salt and nitrogen oxides in the atmosphere were most abundantly encountered both in the coarse and fine fractions. On the contrary, original sea salt particles were rarely observed. The fact that most of the carbonaceous particles were distributed in the fine fraction implies that their origin is anthropogenic.

A STUDY ON WEAR BEHAVIORS OF CAM SPINDLES MANUFACTURED FROM CK 45 STEEL AND CAM SPINDLES MANUFACTURED FROM GGG-50 SPHERICAL GRAPHITE CAST IRON AND BORONED

  • Sert, H.;Selcuk, B.;Toprak, H.;Samtas, G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.325-329
    • /
    • 2002
  • This study targets mainly to reduce the manufacturing costs of cam spindles and manufacturing of mechanical components with longer service durations through application of surface engineering techniques on cam spindles. Within the frame of this study, we have attempted to establish the performances of cam spindles manufacture from forged steel and SGCI, through performance of wear tests in plate-disk system, metalographic investigations, SEM imaging, EDS analyses and micro hardness scans on test samples having the same sizes with original cam that once obtained from casting of Spherical Graphite Cast Iron (SGCI) are subjected partially to Boronising and partially to hardening in a salt solution and cam spindles currently manufactured from CK 45 through cauterization based reshaping.

  • PDF

Synthesis of Yttrium Iron Garnet Powder by Homogeneous Precipitation and its Crystallization (균일침전법에 의한 Yttrium Iron Garnet 분말의 합성 및 결정화)

  • 안영수;한문희;김종오
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.693-699
    • /
    • 1996
  • YIG precursor powder was obtained by homogeneous precipitation in chloride salt solution by thermal decom-position of urea. It was found that ferric ions precipitated prior to yttrium ions. The precipitate was minute and spherical in shape. The precipitate formed consisted of the mixture of amorphous and ferric oxyhydroxide. Crystallization of YIG was proceeded by solid state reaction of intermediate YFeO3 and Fe2O3 in the temperature range of 85$0^{\circ}C$ to 140$0^{\circ}C$. Single phase of YIG was obtained by heat-treatment of the powder at 140$0^{\circ}C$ for 6 hrs in air. The powder calcined was molded into pellets and sintered in air. The maximum density of 4,92 g/cm3(95.1% of theoretical density) was obtainable for the pellet sintered at 145$0^{\circ}C$ using the powder calcined at 90$0^{\circ}C$.

  • PDF

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

A study on the traditional salt-making of the Joolpo inlet area during the 18th and 19th century (18~19世紀 茁浦灣의 煮鹽 - 鹽場의 分布와 煮鹽法을 중심으로 -)

  • ;Hong, Keum-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.1
    • /
    • pp.46-64
    • /
    • 1994
  • Among every civilized people salt has been recognized as an essential foodstuff to the human society without which even man's survivor is unthinkable. The cultural-anthropological meaning of salt is estimated highly as well, and in geographical perspective salt itself symbolize regional interrelationship. Playing a decisive role in freeing innermost settlement from isolation, salt aiso made a contribution to expanding human habitats. This study tries to reconstruct historica geography of 18th and 19th century surrounding traditional salt-roasting (chayeom). The Joolpo Inlet area which is located on the mid-western coast in Honem Region is selected for study area. Established on the basis of optimum physical geographical conditions such as topography, climate and vegetation, salt-making of Joolpo Inlet area was run dynamically with the sudden turn of events in the 18-19th century which was chacterized as an age of transition from medieval society to modern one. In this paper the writer attempts to clarify mainly following three points: physical conditions and socio-economic background leading to the initiation and later development of roasting of salt in Joolpo Bay; distribution of saltworks; methods of saltmaking. Main points drawn from these analyses can be summarized as follows: of iron pan and cow-drawn tools rendered labour-saving and output growth. 1, Saltworks of Joolpo Inlet area in the 18-19th century were distributed evenly over Kobu, Puan, Mujang and Heungduck counties among which Kobu's was located in Puanmyon - a sort of exclave. All saltworks belonging to above four counties were clasified as most lucrative ones in Honam Region on government archives. In particular, Gumdang saltwork which belongs to Mujang county is noteworthy in that it was first introduced by one Paekje priest in 6th century and therefore it provides a clue to examine the history of salt-roasting of Joolpo Inlet area. In light of the fact that temple or monastery economy, regardless of East and West, has been closely connected with traditional industry, the case of Gumdang is not unusual. 2. The process of saltmaking follows this order: harrowing of salt field exposed to solar heat; construction of saltern mound with saline earth; acquiring of brine by leaching saline earth; roasting of salt. Salterns (saltworks) are consisted with various salt making facilities such as roasting shed, saltern mound, salt field, salt well) salt pit or brine pit) and seawater reservoir. Among them roasting shed which is constructed chiefly with hundreds of pieces of pine tree as a frame and with straw as roof and wall is customarily considered as an unit of saltwork. And inside it is saltpan made of two kinds of materials, that is iron pan or plaster pan. The area attached to one unit of roasting shed is approximately 1 ha, and that of saltern mound is a tenth of it.

  • PDF

Improvement of Salt Accumulated Soil and Crop Growth using Coal Ash (석탄회를 이용한 염류집적 토양 개선과 작물 생육 증진)

  • Lee, Jong Cheol;Oh, Se Jin;Kang, Min Woo;Kim, Young Hyun;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • BACKGROUND: Cultivation area using agricultural plastic film facilities in Korea is rapidly increasing every year; however, it accelerates the salt accumulation in soils due to repeated cultivation and excessive use of chemical fertilizers. Coal ash contains various trace elements and has high potential to be used in agricultural purposes. This research was aimed to improve the quality of salts-accumulated soils and crop growth grown in the plastic film facilities using the soil amendment derived from coal ash and zero-valent iron powder. METHODS AND RESULTS: Soil amendment used in the study was manufactured using coal ash with iron powder and subjected to a typical upland soil for soil quality enhancement and two salts-accumulated soils for crop growth. After one month incubation of the salts-accumulated soils treated with the soil amendment, soil pH increased significantly and soil EC decreased by approximately 50%, compared to the control or the treatment without the soil amendment. Since the soil salts' concentration is proportional to EC, the subjected soil amendment can be proposed as an effective way to overcome soil salts accumulation in agricultural plastic film facilities. For crop growth, the length of roots and stems increased by approximately 10% and the dry weight also increased by a maximum of 75%, compared to the control. CONCLUSION: The soil amendment made from waste resources such as coal ash and zero-valent iron was found to not only be effective in improving salt-accumulated soils and crop yield but also be safe against harmful heavy metals.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Separation of Neodymium from NdEeB Permanent Magnetic Scrap (NdFeB계 영구자석 스크랩으로부터 네오디뮴의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Lee Jin-Yeung;Kim Sung-Don;Kim Joon-Soo;Lee Jae-Chun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.57-63
    • /
    • 2003
  • In this study, the separation of neodymium was investigated from NdFeB permanent magnet scrap. Decomposition and leach-ing process of NdFeB permanent magnet scrap by oxidation roasting and sulfuric arid leaching were examined. Neodymium could be separated from iron by double salt precipitation using sodium sulfate. The optimum conditions established for decom-position and leaching are as follows: oxidation roasting temperature is $500^{\circ}C$ for sintered scrap and $700^{\circ}C$ for bonded scrap, concentration of sulfuric acid in leaching solution is 2.0 M, leaching temperature and time is $50^{\circ}C$ and 2 hrs, and pulp density is 15%. The leaching yield of neodymium and iron was 99.4% and 95.7% respectively. The optimum condition for separation of neodymium by double-salt precipitation was 2 equivalents of sodium sulfate and $50^{\circ}C$ The yield of neodymium was above 99.9%.

Evaluation of the Corrosion Resistance of Plated Ni and Ni-Cr Layers on Fe Substrate by Using Salt Spray, CASS and EC Tests (철소지 위에 형성된 니켈 및 니켈-크롬 도금층의 염수분무, 캐스, 전해부식시험법을 이용한 내식성평가)

  • 신재호;이동훈;이재봉;신성호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.307-316
    • /
    • 2003
  • Salt spray, CASS(copper accelerated acetic salt spray) and EC(electrolytic corrosion) tests were performed in order to evaluate the corrosion resistance of plated Ni and Ni-Cr layers on Fe substrate. Compared with the conventional methods such as salt spray and CASS, the electrochemical method such as EC test may be beneficial in terms of test time span and quantitative accuracy. Furthermore, EC test can also become the alternative method to evaluate the resistance to corrosion of coatings by measuring the corrosion potentials of the coated layers in the electrolyte during the off-time of EC cycles. Compared with the corrosion potentials of pure iron, nickel, chromium, those potentials of coated layers can be used to anticipate the extent of corrosion. Results showed that in terms of the test time span, EC test gave 14 times and 21 times faster results than the salt spray test in cases of $5\mu\textrm{m}$ Ni and $20\mu\textrm{m}$ Ni plated layers, respectively. In addition, EC test also offered the shorter test time span than CASS test in cases of $5 \mu\textrm{m}$ Ni + $0.5\mu\textrm{m}$ Cr, and $20\mu\textrm{m}$ Ni + $0.5\mu\textrm{m}$ Cr on Fe substrate by 78 times and 182 times, respectively. Therefore, EC test can be regarded as the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as salt spray and CASS.