• Title/Summary/Keyword: Iron reduction

Search Result 611, Processing Time 0.028 seconds

Hydrogen Reduction Behavior of Oxide Scale in Water-atomized Iron Powder (수분사 Fe 분말의 산화물 및 이의 수소가스 환원거동)

  • Shin, Hea-Min;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging $850-1000^{\circ}C$ in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including $Fe_2O_3$, $Fe_3O_4$ and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly $Fe_3O_4$ and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above $950^{\circ}C$. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.

Effects of Extracellular Electron Shuttles on Microbial Iron Reduction and Heavy Metals Release from Contaminated Soils

  • Hwang, Yun Ho;Shim, Moo Joon;Oh, Du Hyun;Yang, Jung-Seok;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • To test the potential effects of extracellular electron shuttles (EES) on the rate and extent of heavy metal release from contaminated soils during microbial iron reduction, we created anaerobic batch systems with anthraquinone-2,6-disulfonate (AQDS) as a surrogate of EES, and with contaminated soils as mixed iron (hydr)oxides and microbial sources. Two types of soils were tested: Zn-contaminated soil A and As/Pb-contaminated soil B. In soil A, the rate of iron reduction was fastest in the presence of AQDS and > 3500 mg/L of total Fe(II) was produced within 2 d. This suggests that indigenous microorganisms can utilize AQDS as EES to stimulate iron reduction. In the incubations with soil B, the rate and extent of iron reduction did not increase in the presence of AQDS likely because of the low pH (< 5.5). In addition, less than 2000 mg/L of total Fe(II) was produced in soil B within 52 d suggesting that iron reduction by subsurface microorganisms in soil B was not as effective as that in soil A. Relatively high amount of As (~500 mg/L) was released to the aqueous phase during microbial iron reduction in soil B. The release of As might be due to the reduction of As-associated iron (hydr)oxides and/or direct enzymatic reduction of As(V) to As(III) by As-reducing microorganisms. However, given that Pb in liquid phase was < 0.3 mg/L for the entire experiment, the microbial reduction As(V) to As(III) by As-reducing microorganisms has most likely occurred in this system. This study suggests that heavy metal release from contaminated soils can be strongly controlled by subsurface microorganisms, soil pH, presence of EES, and/or nature of heavy metals.

Microbial Reduction of Iron(III) Oxides: Implication for Permeable Reactive Barriers. (철환원 미생물을 이용한 3가 철의 환원에 관한 연구)

  • 임현정;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.250-253
    • /
    • 2002
  • Remediation of groundwater using zero valent iron filings has received considerable attention in recent years. However, zero valent iron is gradually transformed to iron(III) oxides at permeable reactive barriers, so the reduction of iron(III) oxides can enhance the longevity of the reactive barriers. In this study, microbial reduction of Fe(III) was performed in anaerobic condition. A medium contained nutrients similar to soil solution. The medium was autoclaved and deoxygenated by purging with 99.99% $N_2$ and pH was buffered to 6, while the temperature was regulated as 2$0^{\circ}C$. Activity of iron reducing bacteria were not affected by chlorinated organics but affected by iron(III) oxide. Although perchloroethylene(PCE) was not degraded with only ferric oxide, PCE was reduced to around 50% with ferric oxide and microorganism. It shows that reduced iron can dechlorinate PCE.

  • PDF

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 2. Effects of Synthesis Conditions on Iron Reactivities

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.174-180
    • /
    • 2005
  • Nano-sized iron was synthesized using borohydride reduction of $Fe^{3+}$ in aqueous solution. A wide range of synthesis conditions including varying concentrations of reagents, reagent feeding rate, and solution pH was applied in an aqueous system under anaerobic condition. The reactivity of nano-sized iron from each synthesis was evaluated by reacting the iron with TCE in batch systems. Evidence obtained from this study suggest the reactivity of iron is strongly dependent on the synthesis solution pH. The iron reactivity increased as solution pH decreased. More rapid TCE reduction was observed for iron samples synthesized from higher initial $Fe^{3+}$ concentration, which resulted in lower solution pH during the synthesis reaction. Faster feeding of $BH_4^-$ solution to the $Fe^{3+}$ solution resulted in lower synthesis solution pH and the resultant iron samples gave higher TCE reduction rate. Lowering the pH of the solution after completion of the synthesis reaction significantly increased reactivity of iron. It is presumed that the increase in the reactivity of iron synthesized at lower pH is due to less precipitation of iron (hydr)oxides or less surface passivation of iron.

Hybrid Barriers of Iron and Modified-bentonite for the Remediation of Multi-contaminated Water (복합오염물질 제거를 위한 철과 개량 벤토나이트의 복합층에 관한 연구)

  • Cho, Hyun-Hee;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.512-519
    • /
    • 2004
  • Hybrid barriers using reduction and immobilization were tested to remediate the groundwater contaminated with multi-pollutants in this study. Iron filings and HDTMA(hexadecyltrimethylammonium)-bentonite were simulated in columns to assess the performance of hybrid barriers for remediation of trichloroethylene(TCE)-contaminated water. TCE reduction rate for the mixture of iron filings and HDTMA-bentonite was about 7 times higher than that for iron filings, only suggesting the reduction of TCE was accelerated when HDTMA-bentonite was mixed with iron filings. TCE reduction rate for the two layers of iron and HDTMA-bentonite was nearly similar to that for iron filings alone, but the partition coefficient($K_d$) for the two layers was 4.5 times higher than for that iron filings only. TCE was immobilized in the first layer with HDTMA-bentonite, and then dechlorinated in the second layer with iron filings. HDTMA-bentonite may contribute to the increase in TCE concentration on iron surface so that more TCE can be reduced. Also, TCE removal in the hybrid barriers was not affected by chromate and naphthalene while the reduction rate of TCE with the co-existing contaminants by iron filings was significantly decreased. Significant TCE removal in this research indicates that the proposed hybrid barrier system has the potential to become the effective remediation alternative during the occurrence of oil shock. Also, if subsurface environments are contaminated with multi-pollutants that contain non-reducible compounds as well as reducible compounds such as TCE, the conventional reactive barriers cannot be applied to this subsurface environment, while the proposed hybrid system can be applied successfully.

복합오염물질제거를 위한 현장반응층 이용에 관한 연구

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.168-171
    • /
    • 2003
  • This research was conducted to assess the performance of the mixed reactive materials with sand, iron filings, and HDTMA-bentonite for trichloroethylene (TCE) and chromate removal under controlled groundwater flow conditions. TCE and chromate removal rates with the mixtures of iron filing/HDTMA-bentonite were highest among four columns due to reduction by iron filings and sorption by HDTMA-bentonite. The greater capacity of the mixed iron filing/HDTMA-bentonite compared HDTMA-bentonite was due to an enhanced chromate reduction in addition to chromate sorption. The presence of chromate caused greater inhibition of TCE removal in the column with iron filings, while the presence of TCE caused less inhibition of TCE. Also, nitrate caused the decrease in TCE removal relative to chloride. Nitrate ions may also significantly affect TCE reduction rates by competing for electrons with the chlorinated compounds. The anion and co-existed contaminants competing effects should be considered when designed permeable reactive barriers (PRBs) composed of zero valent iron for field applications to remediate TCE and chromate.

  • PDF

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 1. Comparison of Aerobic vs. Anaeriobic Synthesis and Characterization of Nanoparticles

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 2005
  • Nano-sized iron particles were synthesized by reduction of $Fe^{3+}$ in aqueous solution under two reaction conditions, aerobic and anaerobic, and the reactivity of iron was tested by reaction with trichloroethene (TCE) using a batch system. Results showed that iron produced under anoxic condition for both synthesis and drying steps gave rise to iron with higher reduction reactivity, indicating the presence of oxygen is not favorable for production of nano-sized iron deemed to accomplish reactivity enhancement from particle sized reduction. Nano-sized iron sample obtained from the anoxic synthesis condition was further characterized using various instrumental measurements to identity particle morphology, composition, surface area, and particle size distribution. The scanning electron microscopic (SEM) image showed that synthesized particles were uniform, spherical particles (< 100 nm), and aggregated into various chain structures. The effects of other synthesis conditions such as solution pH, initial $Fe^{3+}$ concentration, and reductant injection rate on the reactivity of nano-sized iron, along with standardization of the synthesis protocol, are presented in the companion paper.

Metabolic Characterization of Lactic Acid Bacterium Lactococcus garvieae sk11, Capable of Reducing Ferric Iron, Nitrate, and Fumarate

  • Yun, Su-Hee;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.218-225
    • /
    • 2007
  • A lactic acid bacterium capable of anaerobic respiration was isolated from soil with ferric iron-containing glucose basal medium and identified as L. garvieae by using 16S rDNA sequence homology. The isolate reduced ferric iron, nitrate, and fumarate to ferrous iron, nitrite, and succinate, respectively, under anaerobic $N_2$ atmosphere. Growth of the isolate was increased about 30-39% in glucose basal medium containing nitrate and fumarate, but not in the medium containing ferric iron. Specifically, metabolic reduction of nitrate and fumarate is thought to be controlled by the specific genes fnr, encoding FNR-like protein, and nir, regulating fumarate-nitrate reductase. Reduction activity of ferric iron by the isolate was estimated physiologically, enzymologically, and electrochemically. The results obtained led us to propose that the isolate metabolized nitrate and fumarate as an electron acceptor and has specific enzymes capable of reducing ferric iron in coupling with anaerobic respiration.

Study on the Reduction of Forging Oxide Scale using Hydrogen (단조 산화스케일로부터 철계분말 제조 기술개발 연구)

  • Lee, Dong-Won;Yun, Jung-Yeul;Shin, Shun-Myung;Kim, In-Soo;Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2013
  • The study on the fabrication of iron powder from forging scales using hydrogen gas has been conducted on the effect of hydrogen partial pressure, temperature, and reactive time. The mechanism for the reduction of iron oxides was proposed with various steps, and it was found that reduction pattern might be different depending on temperature. The iron content in the scale and reduction ratio of oxygen were both increased with increasing reactive time at 0.1atm of hydrogen partial pressure. On the other hand, for over 30 minutes at 0.5 atm of hydrogen partial pressure, the values were found to be almost same. In the long run, iron metallic powder was obtained with over 90% of iron content and an average size of its powder was observed to be about $100{\mu}m$.