• Title/Summary/Keyword: Iron oxide catalyst

Search Result 40, Processing Time 0.025 seconds

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

Degradation of Phenol with Fenton-like Treatment by Using Heterogeneous Catalyst (Modified Iron Oxide) and Hydrogen Peroxide

  • Lee, Si-hoon;Oh, Joo-yub;Park, Yoon-chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.489-494
    • /
    • 2006
  • Goethite, hematite, magnetite and synthesized iron oxide are used as catalysts for Fenton-type oxidation of phenol. The synthesized iron oxides were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The catalytic activity of these materials is classified according to the observed rate of phenol oxidation. The effectiveness of the catalysts followed the sequence: ferrous ion > synthesized iron oxide >> magnetite hematite > goethite. According to these results, the most effective iron oxide catalyst had the structure similar to natural hematite. The surface oxidation state of the catalyst was between magnetite and hematite (+2.5 ~ +3.0). Phenol degraded completely in 40 min at neutral pH (pH = 7). Soluble ferric and ferrous ions were not detected in the filtrate from Fenton reaction solution by AAS. The formation of hydroxyl radicals was confirmed by EPR.

A study on the recovery of chromium from metal-plating wastewater with spent catalyst (폐산화철촉매에 의한 도금폐수중 크롬이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • A large tons of spent iron oxide catalyst come from the Styrene Monomer(SM) production company. It is caused to pollute the land and underground water due to the high alkali contents in the catalyst by burying them in the landfill. In order to recycle the spent catalyst, a basic study on the recovery of chromium ion from metal plating wastewater with the spent catalyst was carried out. The iron oxide catalyst adsorbed physically $Cr^{+6}$ in the lower pH 3.0, that is the isoelectric point of the spent catalyst. It was found that the iron oxide catalyst reduced the $Cr^{+6}$ into Cr+3 by the oxidation of ferrous ion into ferric ion on the surface of catalyst, and precipitated as $Cr(OH)_3$ in the higher than pH 3.0. The $Cr^{+6}$ was recovered 2.0∼2.3g/L catalyst in the range of pH 0.5∼2.0, but it was recovered 1.5 g/L catalyst at pH 3.0 of wastewater. The recovery of Cr was increased as the higher concentration in the continuous process, but the flowrates were nearly affected on the Cr recovery.

A Study on the Magnetic Separation of Magnetite from Spent Iron-oxide Catalyst (폐 산화철촉매로부터 마그네타이트의 자력선별에 관한 연구)

  • 현종영;이효숙;이우철;채영배
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • Magnetic separation was carried out in order to improve the magnetite grade of the spent iron oxide catalyst, that was composed with magnetite, ceria and soluble alkaline salt. The recovery of magnetite from the spent iron oxide catalyst was over 99%, and the magnetite contents was upgraded to about 80% from 70% via wet type magnetic separation at 500 Gauss. This improvement was due to the removal of alkaline salt by water instead of the magnetic separation.

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

A Study on the Recovery of Zinc ion from Metal-Plating Wastewater by Using Spent Catalyst (酸化鐵 廢觸媒에 의한 도금폐수중 아연이온 回收에 관한 基礎硏究)

  • 이효숙;오영순;이우철
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2001
  • Zinc ion could be recovered from metal plating wastewater with the spent iron oxide catalyst which was used in the plant of Styrene Monomer(SM) production. The zinc was recovered more than 98.7% at higher than pH 2.0. The saturation magnetization of the spent catalyst is enough high as 59.4 emu/g to apply in the solid-liquid separation after treating the wastewater. The mechanism of zinc recovery with the iron oxide catalyst could be a electro-chemical adsorption at pH 3.0~8.5, and a precipitation as $Zn(OH)_2$ at higher than pH 8.5.

  • PDF

Synthesis of NiZn-Ferrite from Waste Iron Oxide Catalyst (산화철 페촉매를 애용한 NiZn-페라이트의 합성)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • NiZn-ferrite was synthesized usign waste iron oxide catalysts which were produced from styrene monomer process and buried underground as an industrial wastes. The spinel type ferrite was obtained by calcination and sintering of the mixture of finely ground waste catalysts, nickel oxide and zinc oxide powders. The sintered body of Ni/sub 0.5/Zn/sub 0.5/Fe₂O₄ composition at 1230℃ for 5 hours showed the density of 5.38g/㎤, and initial permeability of 59 at 1 kHz. Not only cerium oxide, which existed as a major component in the catalyst, but also unicorporated NiO and ZnO into spinel structure remained as second phases after sintering.

  • PDF

Preparation of Water-based Magnetic Fluids with Spent Iron Oxide Catalyst (산화철 폐촉매로부터 수상 자성유체 제조방법)

  • Lee, Hyo-Sook;Shao, Hui-Ping;Kim, Chong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • We prepared water-based magnetic fluids with the spent iron oxide catalysts which were used in the styrene monomer production process. The catalyst was composed with 70% magnetite and alkali metals. The water-based magnetic fluids were prepared by mechanical grinding with olecic acid as a surfactant and water in an attritor. The magnetization of the water-based magnetic fluids was 22 emu/g in the 10 kOe.

Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst (산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성)

  • Hwang, Yeon;Kwon, Soon-Kil;Lee, Hyo-Sook;Je, Hae-June;Park, Sang-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1162-1166
    • /
    • 2001
  • NiZn-ferrite was synthesized from waste catalysts, which were produced from styrene monomer process and buried underground as an industrial wastes, and its magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900$\^{C}$ and sintering at 1230$\^{C}$ for 5 hours. The intial permeability was measured and reflection loss was calculated from S-parameters for the composition of Ni$\_$x/Zn$\_$1-x/Fe$_2$O$_4$(x=0.36, 0.50, 0.66). NiZn-ferrite synthesized from waste iron oxide catalyst showed a feasibility for the use as electromagnetic wave absorber in X-band.

  • PDF

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.