• Title/Summary/Keyword: Iron minerals

Search Result 451, Processing Time 0.023 seconds

Influence of Maternal Diet on Mineral and Trace Element Content of Human Milk and Relationships Between Level of These Milk Constituents (수유부의 식이섭취가 모유의 무기질 및 미량원소 함량에 미치는 영향과 모유의 각 무기질 농도 사이의 상관성 연구)

  • 안홍석
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.772-782
    • /
    • 1993
  • This study was conducted to assess the relationships between maternal dietary intakes and milk contents of minerals and trace elements, and the correlation among levels of these milk constituents. Maternal dietary intakes were measured and milk samples were collected at 2∼5 days, 2, 4, 6 and 12 weeks postpartum from 29 lactating women. The results obtained are sumarized as follows: 1) The overall mean nutrient intakes of lactating women in this study were below the recommended allowances and there were extensive individual variations between subjects. 2) Concentrations of minerals and trace elements in matured human milk showed the same range reported from different countries with the exception of calcium, magnesium, manganese and molybdenum which were relatively high. 3) There were no significant relationships between maternal dietary intakes of minerals and the corresponding mineral levels of human milk. In addition, no significant correlations were found between maternal vitamin C intake and the iron contents of milk. These were significant positive correlations between maternal calcium intake and the magnesium level of milk ; between maternal protein intake and the contents of zinc and copper in human milk. Maternal energy intake was negatively correlated with milk sodium level. 4) Pearson correlation coefficient showed positive significant relationships between levels of 17 pairs of various mineral and trace elements : sodium and potassium, iron ; potassium and calcium, phosphors, magnesium, iron, copper, manganese ; calcium and magnesium, iron manganese, molybdenm, nickel ; magnesium and iron, molybdenum ; iron and copper ; nickel and manganese.

  • PDF

Comparison of Dietary Calcium and Iron Intake in Young Men Living Alone or Living with Roommates

  • Park, Young-Sook;Kim, Soon-Kyung;Byoun, Kwang-Eui
    • Journal of Community Nutrition
    • /
    • v.4 no.3
    • /
    • pp.159-163
    • /
    • 2002
  • A survey was performed to 238 male young men who were living alone (104 persons) or living with roommates (134 persons). Their average age was 22.6 years old, height 171.8cm, and weight 65.6kg. Their daily calcium intake level was averaged 271.9 $\pm$ 169.1mg, which was 38.8% of Korean Recommended Dietary Allowances(RDA). Comparing calcium intake of each mealtime, breakfast, lunch, dinner, and snacks were composed of 18.6%, 30.0%, 34.0% and 17.4%, respectively. Their daily iron intake level was averaged 8.9 $\pm$ 10.8mg, which was 74.3% of Korean RDA. Comparing iron intake of each mealtime, breakfast, lunch, dinner, and snacks were composed of 15.4%, 33.6%, 36.3% and 14.7%, respectively. Deficiency of these minerals in young male adults were severe and the nutrient qualities were also poor and the deficiency was more profound in calcium than in iron. And we observed iron nutrition differed significantly according to their living status, such as iron intake and its %RDA were significantly worse in single living subjects than the other. However calcium did not show significant difference. It was found mineral intake, especially iron, could be improved in young men living with roommates than living alone and regular breakfast could improve calcium and iron intakes. (J Community Nutrition 4(3) : 159~5163, 2002)

Enhanced Expression of High-affinity Iron Transporters via H-ferritin Production in Yeast

  • Kim, Kyung-Suk;Chang, Yu-Jung;Chung, Yun-Jo;Park, Chung-Ung;Seo, Hyang-Yim
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.82-87
    • /
    • 2007
  • Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.

The Relationship between Dietary Intakes, Serum Levels, Urinary Excretions of Zn, Cu, Fe and Serum Lipids in Korean Rural Adults on Self-Selected Diet (일부 농촌 성인남녀의 아연, 구리, 철분의 섭취량, 혈액수준, 뇨중 배설량과 혈청지질과의 관계)

  • 이주연
    • Journal of Nutrition and Health
    • /
    • v.29 no.10
    • /
    • pp.1112-1120
    • /
    • 1996
  • This study was carried out to estimate the relationship between dietary intakes, blood levels, and urinary excretions of zine, copper, and iron and serum lipids in 30 healthy adults living in Korean rural area. Analyses for the nutritional status of the subjects were performed by 3-day intake recored, duplicated diet collections, 24-hour urine collection, and venous blood sampling before measuring of blood pressure. The daily intakes of zinc, copper, and iron estimated for 3 days were 8.2mg, 3.0mg, and 12.7mg in men and 8.4mg, 3.7mg, and 12.3mg in women, respectively. The serum contents of cholesterol, triglyceride, and HDL-cholesterol were 165.9mg/dl, 119.4mg/dl, and 43.7mg/dl in men and 154.1mg/dl, 88.2mg/dl, and 47.1mg/dl in women, respectively. The serum levels of zine, copper, and iron were 146.0ug/dl, 120.3ug/dl, and 131.1ug/dl in men and 140.6ug/dl, 117.3ug/dl, and 112.2ug/dl in women, respectively. In the relation between dietary intakes, serum levels, and urinary excretions of these minerals, there were significantly positive correlation between zine intake and copper intake(p<0.05), copper intake and urinary excretion(p<0.001), and iron intake and serum zine level(p<0.05). In the relation between these minerals and serum lipids, dietary zine showed positive correlation with triglyceride(p<0.05), and serum zine/copper ratio showed negative correlation with HDL-cholesterol (p<0.05).

  • PDF

Oxygen Isotope Study of Mulgeum, Yangseong, Maeri and Kimhae Iron Ore Deposits in Gyeongnam Province, Korea

  • Woo, Young-Kyun;Savin, Samuel M.
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2002
  • Mulgeum, Yangseong, Maeri and Kimhae iron ore deposits in Gyeongnam Province are hydrothermal skarn type magnetite ore deposits in propylitized andesitic rock near the contact with Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The skarn zones away from the vein are quartz-garnet skarn, epidote skarn and epidote-orthoclase skarn. Oxygen isotope analyses of coexisting minerals from andesitic rock, Masanite and major skarn zones, and of magnetite, hematite and quartz were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}^{18}O$ and ${\delta}^{18}O_{H2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothermal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the deep seated Masanite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and occurred the extensive isotopic exchange with the propylitized andesitic rock, and formed the skarns. During these processes, the temperature and ${\delta}^{18}O_{H2O}$ value of hydrothermal solution were lowered gradually. At the main stage of iron ore precipitation, because all the alteration was already finished, the new rising hydrothermal solution formed only the magnetite ore without oxygen isotopic exchange with the wall rock.

Geochemical and Mineralogical Characterization of Arsenic-Contaminated Soil at Chonam Gold Mine, Gwangyang (광양 초남 금 광산 비소오염 토양의 지화학적 및 광물학적 특성)

  • Kong, Mi-Hye;Kim, Yu-Mi;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.203-215
    • /
    • 2011
  • Geochemical and mineralogical properties of a contamited soil should be taken into account to decide a remediation strategy for a given contaminant because development and optimization of soil remedial technologies are based on geochemical and mineralogical separation techniques. The objective of this study was to investigate the geochemical and mineralogical characteristics of arsenic-contaminated soils. The arsenic-contaminated soil samples were obtained from Chonam gold mine, Gwangyang, Chonnam, Particle size analysis, sequential extraction, and mineralogical analyses were used to characterize geochemical and mineralogical characteristics of the As-contaminated soils. Particle size analyses of the As-contaminated soils showed the soils contained 17-36% sand, 25-54% silt, 9-28% clay and the soil texture were sandy loam, loam, and silt loam. The soil pH ranged from 4.5 to 6.6. The amount of arsenic concentrations from the sequential soil leaching is mainly associated with iron oxides (1 to 75%) and residuals (12 to 91%). Major minerals of sand and silt fractions in the soils were feldspar, kaolinite, mica, and quartz and minor mineral of which is an iron oxide. Major minerals of clay fraction were composed of illite, kaolinite, quartz, and vermiculite. And minor minerals are iron oxide and rutile. The geochemical and mineralogical analyses indicated the arsenic is adsorbed or coprecipitated with iron oxides or phyllosilicate minerals. The results may provide understanding of geochemical and mineralogical characteristics for the site remediation of arsenic-contaminated soils.

Carbothermic Reduction of Zinc Oxide with Iron Oxide (산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響))

  • Kim, Byung-Su;Park, Jin-Tae;Kim, Dong-Sik;Yoo, Jae-Min;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.44-51
    • /
    • 2006
  • Most electric arc furnace dust (EAFD) treatment processes to recover zinc from EAFD employ carbon as a reducing agent for the zinc oxide in the EAFD. In the present work, the reduction reaction of zinc oxide with carbon in the present of iron oxide was kinetically studied. The experiments were carried out at temperatures between 1173 K and 1373 K under nitrogen atmosphere using a weight-loss technique. From the experimental results, it was concluded that adding the proper amount of iron oxide to the reactant accelerates the reaction rate of zinc oxide with carbon. This is because iron oxide in the reduction reaction of zinc oxide with carbon promotes the carbon gasification reaction. The spherical shrinking core model for a surface chemical reaction control was found to be useful in describing kinetics of the reaction over the entire temperature range. The reaction has an activation energy of 53 kcal/mol (224 kJ/mol) for ZnO-C reaction system, an activation energy of 42 kcal/mol (175 kJ/mol) for $ZnO-Fe_{2}O_{3}-C$ reaction system, and an activation energy of 44 kcal/mol (184 kJ/mol) for ZnO-mill scale-C reaction system.

Effect of Dietary Iron and Coffee Intake on Oxidative Stress and Antioxidative Enzyme Activities of Rats (식이 철 수준과 커피 섭취가 흰쥐의 산화스트레스와 항산화효소 활성에 미치는 영향)

  • 김혜영;정현선
    • Journal of Nutrition and Health
    • /
    • v.35 no.9
    • /
    • pp.919-925
    • /
    • 2002
  • Iron deficiency is a severe nutritional problem in the world. Coffee intake of the people is increasing every year and it can increase the loss of several essential body minerals including iron. Either iron deficiency or coffee intake may increase the oxidative stress of the body. However, the effect of iron deficiency and/or coffee intake on peroxidation have not been studied much. Therefore, the aim of this study was to investigate the effect of coffee intake on oxidative stress and antioxidative enzyme activities of iron-deficient rats. Forty-eight male rats of Sprague-Dawley strain were divided into two groups by dietary iron levels. Iron deficient group were fed 5 ppm iron diet and iron-sufficient group were fed 50 ppm iron diet. Each iron group were divided into three sub-groups by coffee levels (0%, 1%, 4%) included in the experimental diet. The experimental diets were fed for 4 weeks. The hemoglobin level was significantly low in iron deficient group and the level was exacerbated by high coffee intake. The malondialdehyde concentration of the plasma and liver were not affected by iron or coffee level in this study. However, plasma aspartate aminotransferase and alanine aminotransferase, the indicator of the liver damage, were increased by high coffee intake. The erythrocyte and liver superoxide dismutase (SOD) activities were elevated in iron deficient groups. Coffee intake increased erythrocyte SOD activity in iron sufficient groups. Glutathione peroxidase and catalase activities were not influenced much by either iron or coffee intake. In conclusion, high coffee intake in iron deficiency may not only increase the anemia symptoms, but also may increase the oxidative stress of the body.(Korean J Nutrition 35(9) : 919~925, 2002)

Effect of Acid Buffering Capacity and Soil Component Remediation of Soil Contaminated with Phenanthrene using Electrokinetic-Fenton Process (산 완충능력과 토양 성분이 동전기-펜톤 공정에 의한 phenanthrene 오염토양 정화에 미치는 영향)

  • Kim, Jung Hwan;Na, So Jeong;Park, Joo Yang;Byun, Young Deog
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.129-136
    • /
    • 2013
  • This research was conducted to investigate effects of acid buffering capacity and soil component in treatment of phenanthrene using electrokinetic-Fenton process. In Hadong clay of high acid buffering and low iron oxide content, it was difficult to oxidize phenanthrene due to shortage of iron catalyst and scavenger effect of carbonate minerals. The desorbed phenanthrene conductive to Fenton oxidation was transported toward cathode by electroosmotic flow. However, in Youngdong illitic clay, oxidation of phenanthrene near anode readily occurred compared to Hadong clay due to high iron content and low acid buffering capacity.

Recovery of Cu and Sn from the Bioleaching Solution of Electronic Scrap (전자(電子)스크랩의 미생물(微生物) 침출액(浸出液)으로부터 구리 및 주석의 회수(回收)에 관한 연구(硏究))

  • Ahn, Jae-Woo;Kim, Meong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.41-47
    • /
    • 2006
  • A study for recovering of copper and lead from electronic scraps has been carried out using a combination of bioleaching and solvent extraction. It was found that the citric acid generated by Aspergillus niger could be an imporant leaching agent acting in the solubilization of copper, iron, lead and tin from the electronic scrap. Copper could be selectively extracted by 10% LIX84 from the leaching solution and it recoved 99.9% of metallic copper by electrowinning process. Tin and iron were extracted from the remaining solution by 10% Alamine336 and stripped by NaCl solution. Finally, tin could be recovered as a metallic precipitates from the mixed solution of tin and iron by cementation with iron powder.