• Title/Summary/Keyword: Iron core

Search Result 434, Processing Time 0.024 seconds

Design Solutions to Minimize Iron Gore Loss in Synchronous Reluctance Motors Using Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소 해석을 이용한 동기형 릴럭턴스 전동기의 철손 최소화 회전자 구조 설계)

  • Lee, D.D.;Lee, M.M.;Sim, J.M.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.138-140
    • /
    • 2002
  • This paper deals with an automatic design procedure for the minimization of iron core loss in a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to hysteresis loss on the basis of rotor shape of a SynRM in the same torque density. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the iron core loss with the rotor shape. The proposed procedure allows to define the rotor geometric dimensions starting from an existing motor or a preliminary design. The iron loss has been reduced with a rotor design variation.

  • PDF

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2279-2282
    • /
    • 2007
  • Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

Recombinant Human L-ferritin from Saccharomyces cerevisiae: Molecular Characterization and Synthesis of Iron Oxide Nanoparticles (효모에서 생산한 재조합 human L-ferritin의 생화학적 특성 및 나노입자의 철산화물 합성)

  • Kim, Kyung-Suk
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • In the synthesis of nanoparticles, much attention has been paid to regulating the particle size. There has been a possible evident that using the central cavity (core) of the protein ferritin has a greatly significant influence on it because the core can generate the nanometer-sized mineral particles of variable metal ions. In this report, recombinant human L-ferritins produced from Saccharomyces cerevisiae were purified and their molecular properties were characterized. The cDNA for human ferritin L chain was also expressed in another host such as Escherichia coli, and the properties of recombinant L-ferritins were compared. From isoelectric focusing experiment, the L-ferritin from the recombinant yeast showed no indication of N-glycosylation. Some post-translational modifications other than N-glycosylation were speculated in the L-ferritins from yeast. A difference was made in the L-ferritins in their iron uptake rates and the initial rate of the L-ferritin from yeast was slightly increased. The reconstitution yield and size distribution of the core minerals were analyzed in the L-ferritins by transmission electron microscopy. The L-ferritin from yeast with higher reconstitution yield (54.5%) showed slightly larger sizes (mean 6.92 nm) with narrower size distribution than the L-ferritin from E. coli. It is, in conclusion, speculated that L-ferritin from yeast is relatively superior to the other, in view of the size of nanoparticle and its relative homogeneity.

A study on the Reduction of the Stator iron loss on Permanent Magnet Synchronous Motor for Light Railway Transit Propulsion System (경량전철 추진용 영구자석 동기전동기의 고정자 철손 저감 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.376-380
    • /
    • 2012
  • A study on the iron-loss reduction of 110kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) for Light Railway Transit (LRT) is conducted. In general, the iron loss of IPMSM depends on the characteristics of core material and non-oriented electrical steel is used as a core material of IPMSM. In order to reduce the iron-loss of IPMSM, both non-oriented electrical steel and grain oriented electrical steel are applied as core material. Iron loss of 110kW-class IPMSM can be reduced approximately 40% comparing to an existing IPMSM by applying grain oriented electrical steel to the stator teeth.

Spindle Motors using SMC for HDD (SMC를 이용한 HDD용 스핀들 모터)

  • Kim, Sang-Uk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.151-153
    • /
    • 2010
  • This paper is presented for the development of the brushless DC(BLDC) motor for the spindle motor of hard disk drives(HDD). A new BLDC Motor has the use of insulated, compacted, and iron powder for the armature core material of BLDC motors. Insulated iron powder in this paper is generally called soft magnet composite(SMC). The SMC is used for the stator of the motor instead of the laminated steel core. The motor used by SMC can have the good advantages in condition of the high frequency input power and small sized motor. It gets much more high efficiency than laminated steel core at same input power. The proposed motor has a technique of speed sensorless control. Experimental results show the performance of the proposed BLDC motors for an HDD.

A Current Differential Relaying Algorithm for Three-Phase Transformer Considering the Nonlinear Magnetization Characteristics of the Core (비선형 자화특성을 고려한 3상 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Jin, E.S.;Won, S.H.;Lim, U.J.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.320-322
    • /
    • 2003
  • This paper describes a current differential relaying algorithm for a three-phase transformer considering the nonlinear magnetization characteristics of the core. The iron-loss current is obtained from the calculated induced voltage and the core-loss resistance. The magnetizing current is calculated from the estimated core flux and the magnetization curve. The proposed algorithm uses the modified differential current, which is obtained by subtracting the iron-loss current and the magnetizing current from the conventional differential current. The various test results show that the algorithm can discriminate internal fault from magnetic inrush, overexcitation and an external fault.

  • PDF

A Study on Design and Manufacture of the Prototype Die for High-efficiency Induction Motor (고효율 유도전동기용 프로토 타입 금형 설계 및 제작에 관한 연구)

  • Lim, Sae-Jong;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2173-2178
    • /
    • 2009
  • The die technology of a high-efficiency induction motor is an important technology for manufacturing the core (iron core), which is the major part of a high-efficiency induction motor. It is also an essential technology in enhancing national competitiveness. In this study, the core of a high-efficiency induction motor was designed and manufactured as 2 prototype dies: one is for small-size, and the other is for large-size. They are then tested by attaching in press, the result are considered.

Analysis on Torque of Solid Iron Rotor Induction Motor (In Rotor without Slot) (강괴철심회전자를 가진 유도전도기의 토오크 해석)

  • Yun Jong Lee
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.5-8
    • /
    • 1972
  • The purpose of this paper is, as a preliminary step to study on the method of analysing the torque of toothed solid iron rotor, to make an inquiry into the torque calculation formula of homogenious solid iron rotor without slot. The starting point for its theoretical analysis on torque generated by eddy current in solid iron rotor is based on the maximum air gap flux density. In solid rotor induction motor, torque generated by rotor core is considerably large in the range of large slip. The calculated value and observed value on the test machine are also examined in this paper.

  • PDF

Finite Element Analysis of Synchronous Reluctance Motor Considering Iron Core Loss (찰손을 고려한 동기형 릴럭턴스 전동기의 유한요소해석)

  • Lee, Jung-Ho;Kim, Jung-Chul;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.55-57
    • /
    • 1998
  • A finite element analysis for a synchronous reluctance motor (SynRM) is presented with emphasis on the effect of saturation and iron losses. Preisachs model, which allows accurate prediction of iron losses, is adopted in this procedure to provide a nonlinear solution. This technique provide significant properties of proposed SynRM under the magnetic saturation and iron losses effect.

  • PDF

Characteristics comparison between air-cored and iron-cored 100 kW HTS field winding synchronous motors

  • Yoon, Jonghoon;Bong, Uijong;An, Soobin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.38-43
    • /
    • 2020
  • This paper presents comparative research on characteristics of air-cored and iron-cored high-temperature superconductor (HTS) field winding synchronous motors. The 100 kW air-cored model is designed analytically by Spatial Harmonic Method, and based on this model, the iron-cored model having the same output power is designed for comparison. Due to the substantial difference of permeability property between air and iron-core, there is a difference of magnetic field magnitude and angle with respect to the HTS tape c-axis, resulting in a different critical current of the field winding considering the anisotropic property of HTS tape. For a detailed comparison between two models, the following key motor characteristics are calculated through the Finite Element Method (FEM) simulation: 1) critical current; 2) HTS wire length; and 3) torque characteristics. From the simulation results, it can be confirmed that the critical current value of the iron-cored model increases by 33 %. Also, in the case of the superconducting wire consumption, those of the iron-cored and air-cored models are 95.3 m and 815.6 m, respectively. So the wire usage can be reduced to about 88 % by using iron core. However, in terms of torque characteristics, the torque ripple of the iron-cored model is about twice as large as that of the air-cored model, which may be a disadvantage on vibration and acoustic noise.