• Title/Summary/Keyword: Iron Corrosion

Search Result 351, Processing Time 0.025 seconds

Involvement of Organic Acid During Corrosion of Iron Coupon by Desulfovibrio desulfuricans

  • Park, Kyung-Ran;Lee, Hyun-Jin;Lee, Hong-Keum;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.937-941
    • /
    • 2003
  • Microbiologically influenced corrosion (MIC) is an electrochemical process where the participation of microorganisms initiates, facilitates, or accelerates the corrosion reaction. Sulfate-reducing bacteria (SRB) reduce sulfate to sulfide and are known to be the most destructive microorganisms in anaerobic MIC. Accordingly, the current study attempted to elucidate the mechanisms involved and the relative importance of the corrosive products in SRB-induced corrosion. The measured rate of anaerobic corrosion of iron coupons by Desulfovibrio desulfuricans was $89.9{\;}\mu\textrm{g}{\;}\textrm{m}^{-2}{\;}d^{-1}$. Direct contact between the cells and the iron coupon did not seem to be necessary for corrosion to occur, since the corrosion rate was similar ($100.8{\;}\mu\textrm{g}{\;}\textrm{m}^{-2}{\;}d^{-1}$) when the coupon was enclosed in a dialysis bag. The participation of sulfide in the corrosion process was only marginal, as the specific corrosion rate was 2.5 times higher in a sulfate-free pyruvate medium than in an $H_2S-producing$ lactate medium. Acetate (18.8-22.1 mM), the end-product of pyruvate and lactate metabolism, was identified in the culture medium and thus presumed to play a major role in the corrosion process involving Desulfovibrio desulfuricans.

Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

  • Seri, Osami
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.158-161
    • /
    • 2008
  • It is well known that iron is one of the most common impurity elements found in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as $FeAl_3$. The $FeAl_3$ particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of $FeAl_3$ particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting $FeAl_3$ free surface was an electrochemical treatment such as cathodic current density of $-2kAm^{-2}$ in a 20-30 mass% $HNO_3$ solution for the period of 300s. The corrosion characteristics of aluminum surface with $FeAl_3$ free particles are examined in a $0.1kmol/m^3$ NaCl solution. It is found that aluminum with free $FeAl_3$ particles shows higher corrosion resistance than aluminum with $FeAl_3$ particles.

A Study on Desalization and Corrosion Products Formed on Salinized Archaeological Iron Artifacts (침염시킨 철기 유물 표면 위에 형성된 부식 생성물과 탈염처리에 대한 연구)

  • Min, Sim-Kun;Lee, Jae-Hyung;Lee, Jae-Bong;An, Byeong-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.44-56
    • /
    • 2007
  • Excavated archaeological iron artifacts are usually conducted the conservation treatment for removal of chloride ions in the corrosion products. However, some iron artifacts are corroded again even after the conservation treatment due to unremoved chloride ions. Therefore, it is important to prevent desalinized artifacts from the occurrence of corrosion after the treatment. In this paper, we investigated the characteristics of corrosion products on salinized iron artifacts and evaluated the variety of desalination methods such as autoclave, intensive washing and NaOH. It was also found that ${\beta}-FeOOH$ (Akaganeite) played an important role on the occurrence of corrosion and the treatment for removal of chloride ions. The extents of desalination were compared between the desalination methods. Results showed that the autoclave method represented the highest efficiency for desalination while the intensive washing method was the lowest.

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

A Study on Corrosion Inhibitors for applying to Iron objects (철제유물의 부식억제를 위한 부식억제제에 관한 연구)

  • Kim, Hye Sun;Hur, Yoon Hyun;Kim, Soo Ki
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Stabilization of iron artifacts is focused on desalination than corrosion inhibitors. However artifacts are not condition of desalination treatment must be applied to corrosion inhibitors. But iron artifacts is not representative of inhibitors which drug is most effective qualities have not been identified. Therefore in this study validates the effectiveness of existing inhibitors and its purpose is to suggest corrosion inhibitors for iron artifacts. In this study, Comparative experiment of corrosion inhibitors is selected BTA, DAN and MEA, TEA. This study was studied using Corrosion resistance test, Contact angle, XPS. As a result, all the samples treated with corrosion inhibitors was formed hydrophobic coating and was rising corrosion resistance. Also, the concentration of corrosion inhibitors was 3% better than 0.3%. BTA in the XPS experiment, the corrosive material to block the CH bond of the peak concentration was highly. This is considered corrosion potential is very high to see out the effect in the polarization experiment. Ethanolamine was superior to the MEA rather than in the TEA. MEA is likely to be appropriate in an outdoor iron artifacts seem to be suitable as corrosion inhibitors.

The study on the property of material for the shim of stone cultural properties (석조문화재 받침용 쐐기 재질의 물성 실험 연구)

  • Eom, Doo-Sung;Hong, Jung-Ki;Kim, Sa-Dug;Kang, Dai-Il;Lee, Myong-Hee
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.101-118
    • /
    • 2000
  • Stone cultural properties(pagoda, Buddhist statue etc.) is moved in original place for many reasons and restored after taking to pieces for structural safety. With the movement and restoration after taking to pieces, the cast iron is used for the sake of a fixation and horizontality. The stone cultural properties are spoiled the beauty and accelerated the weathering because of the corrosion product of cast iron. So we need to substitute for the improved property in all aspects. We are executed the corrosion test and inquired the property of material on the usable material for the shim of stone cultural properties. That is the Cast iron, Stainless steel, Titanium and Fiber Reinforced Plastics. In the result of the physical property and strength, the Stainless steel and Titanium was superior to the Cast iron. And the Stainless steel and Titanium was slower than the Cast iron in the corrosion velocity for the acid, salt and rain. If the shim is substitute the Stainless steel or Titanium for the Cast iron, the stone cultural properties are able to reduce the pollution of stone cultural properties by corrosion product and should not happen in the matter of stone pagoda.

  • PDF

The Study on the Wear-Corrosion Behavior of Ductile Cast Iron in the Acidic Environment (산성환경 중에서 구상흑연주철재의 마멸-부식거동에 관한 연구)

  • Lim, Uh-Joh;Park, Dong-Gi;Yun, Byoung-Du
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.96-102
    • /
    • 2002
  • This paper was studied on the wear-corrosion behavior of ductile cast iron in the acidic environment. In the dry atmosphere and variety of pH solution, wear-corrosion characteristics and friction coefficient of GCD 60 with various sliding speed and distance were investigated. And electrochemical polarization test of GCD 60 was examined in the environment of various pH value. The main results are as following : In the dry atmosphere, boundary friction appears below nearly 5 $kg_{f}$ of contact load, and it is considered that solid friction occurs over nearly 5 $kg_{f}$ of contact load. As pH value becomes low, wear-corrosion loss in the aqueous solution increases. As the corrosion environment is acidified, corrosion potential of GCD 60 becomes noble, polarization resistance becomes low, and corrosion current density increases.

  • PDF

The Study on the Wear Corrosion Behavior of Induction Hardening High Strength Cast Iron in the pH Environments (고주파 열처리한 강인주철재의 마멸부식거동에 관한 연구)

  • Park, Yun-Sik;Lim, Uh-Joh;Park, Dong-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.52-57
    • /
    • 2008
  • This paper studies on the wear corrosion behavior of induction hardening high strength cast iron in the acidic environments. In a variety of pH solutions, wear corrosion behavior of GC 300 with a variety of contact pressures was investigated, and corrosion wear behavior after immersion test was considered. Also, electrochemical polarization test for GC 300 was carried out in various pH solutions. The main results are as following: In the strong acidic environment, wear corrosion rate of GC 300 appears highly and in the neutral environment is stable. Also, graphitic corrosion in the strong acidic environment occurs. The corrosion current density of GC 300 becomes high in a order of pH 1 > pH 2 > pH 4 > pH 6.5.

  • PDF

General Corrosion Behavior of High Chromium Cast Iron in an Acid Solution (산성 용액에서 고크롬 주철의 전면 부식 거동)

  • Lee, Jun-Seob;Lee, Jun-Hyung;Oh, Jun-Seok;Lee, Je-Hyun
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.367-372
    • /
    • 2021
  • The effect of carbon addition on the general corrosion behavior of high-chromium cast iron (HCCI) was studied by a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) or electron back-scattered diffraction (EBSD), or electrochemical polarization techniques in 0.1 mol dm-3 H2SO4 + 0.05 mol dm-3 HCl at room temperature. The addition of 2.1-2.8 wt% carbon to HCCI increased the fraction of eutectic austenite and eutectic carbide phases, while that of HCCI decreased the fraction of the primary austenitic phase. Potentiostatic polarization of the HCCI at -0.35 VSSCE or 0.0 VSSCE resulted in preferential general corrosion of the primary austenitic or eutectic austenitic phases, respectively. The decrease in corrosion current density and the shift in noble corrosion potential direction with increasing carbon content in the HCCI indicated that the fraction and the chemical composition of austenitic (primary and eutectic) and carbide phases were strongly related to the general corrosion behavior of the HCCI.

Corrosion Tests for High Chromium Cast Iron Using Galvanostatic Polarization Technique in a Simulating Slurry Solution (모사 슬러리 용액에서 정전류 분극을 활용한 고크롬 주철 부식 시험)

  • Ochgerel Baasanjav;Jun-Seob Lee;Ye-Jin Lee;Jun-Seok Oh;Je-hyun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.252-256
    • /
    • 2023
  • The galvanostatic polarization technique was used to accelerate corrosion in high chromium cast iron (HCCI) immersed in a simulated slurry solution of 0.1 mol dm-3 H2SO4, 0.05 mol dm-3 HCl, and 10 wt% SiC. The HCCI contained 27 wt% of Cr and 2.8 wt% of C, and its microstructure mainly comprised austenitic and carbide phases. A two-electrode system using a dense carbon rod and the HCCI sample was employed for the galvanostatic polarization by applying an anodic current for 24 hours. The corrosion rate increased upon applying the anodic current, but the increase was not significant, particularly for current densities higher than 10 µA cm-2. Following polarization, the corrosion morphology revealed that the anodic current accelerated surface corrosion in the HCCI; however while the depth of the corroded area increased, the increase was not substantial. The propagation behavior of the anodic current and its impact on corrosion were further discussed.