• Title/Summary/Keyword: Iris detection

Search Result 68, Processing Time 0.026 seconds

Design of Image Recognition Module for Face and Iris Area based on Pixel with Eye Blinking (눈 깜박임 화소 값 기반의 안면과 홍채영역 영상인식용 모듈설계)

  • Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In this paper, an USB-OTG (Uiversal Serial Bus On-the-go) interface module was designed with the iris information for personal identification. The image recognition algorithm which was searching face and iris areas, was proposed with pixel differences from eye blinking after several facial images were captured and then detected without any activities like as pressing the button of smart phone. The region of pupil and iris could be fast involved with the proper iris area segmentation from the pixel value calculation of frame difference among the images which were detected with two adjacent open-eye and close-eye pictures. This proposed iris recognition could be fast processed with the proper grid size of the eye region, and designed with the frame difference between the adjacent images from the USB-OTG interface with this camera module with the restrict of searching area in face and iris location. As a result, the detection time of iris location can be reduced, and this module can be expected with eliminating the standby time of eye-open.

A Novel Circle Detection Algorithm for Iris Segmentation (홍채 영역 분할을 위한 새로운 원 검출 알고리즘)

  • Yoon, Woong-Bae;Kim, Tae-Yun;Oh, Ji-Eun;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1385-1392
    • /
    • 2013
  • There is a variety of researches about recognition system using biometric data these days. In this study, we propose a new algorithm, uses simultaneous equation that made of the edge of objects, to segment an iris region without threshold values from an anterior eye image. The algorithm attempts to find a center area through calculated outskirts information of an iris, and decides the area where the most points are accumulated. To verify the proposed algorithm, we conducted comparative experiments to Hough transform and Daugman's method, based on 50 images anterior eye images. It was found that proposed algorithm is 5 and 75 times faster than on each algorithm, and showed high accuracy of detecting a center point (95.36%) more than Hough transform (92.43%). In foreseeable future, this study is expected to useful application in diverse department of human's life, such as, identification system using an iris, diagnosis a disease using an anterior image.

Multi-views face detection in Omni-directional camera for non-intrusive iris recognition (비강압적 홍채 인식을 위한 전 방향 카메라에서의 다각도 얼굴 검출)

  • 이현수;배광혁;김재희;박강령
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.115-118
    • /
    • 2003
  • This paper describes a system of detecting multi-views faces and estimating their face poses in an omni-directional camera environment for non-intrusive iris recognition. The paper is divided into two parts; First, moving region is identified by using difference-image information. Then this region is analyzed with face-color information to find the face candidate region. Second part is applying PCA (Principal Component Analysis) to detect multi-view faces, to estimate face pose.

  • PDF

Iris Detection at a Distance by Non-volunteer Method (비강압적 방법에 의한 원거리에서의 홍채 탐지 기법)

  • Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.705-708
    • /
    • 2018
  • Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.

  • PDF

Improving SVM Classification by Constructing Ensemble (앙상블 구성을 이용한 SVM 분류성능의 향상)

  • 제홍모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.251-258
    • /
    • 2003
  • A support vector machine (SVM) is supposed to provide a good generalization performance, but the actual performance of a actually implemented SVM is often far from the theoretically expected level. This is largely because the implementation is based on an approximated algorithm, due to the high complexity of time and space. To improve this limitation, we propose ensemble of SVMs by using Bagging (bootstrap aggregating) and Boosting. By a Bagging stage each individual SVM is trained independently using randomly chosen training samples via a bootstrap technique. By a Boosting stage an individual SVM is trained by choosing training samples according to their probability distribution. The probability distribution is updated by the error of independent classifiers, and the process is iterated. After the training stage, they are aggregated to make a collective decision in several ways, such ai majority voting, the LSE(least squares estimation) -based weighting, and double layer hierarchical combining. The simulation results for IRIS data classification, the hand-written digit recognition and Face detection show that the proposed SVM ensembles greatly outperforms a single SVM in terms of classification accuracy.

Measurement of Spatial Traffic Information by Image Processing (영상처리를 이용한 공간 교통정보 측정)

  • 권영탁;소영성
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • Traffic information can be broadly categorized into point information and spatial information. Point information can be obtained by chocking only the presence of vehicles at prespecified points(small area), whereas spatial information can be obtained by monitoring large area of traffic scene. To obtain spatial information by image processing, we need to track vehicles in the whole area of traffic scene. Image detector system based on global tracking consists of video input, vehicle detection, vehicle tracking, and traffic information measurement. For video input, conventional approaches used auto iris which is very poor in adaptation for sudden brightness change. Conventional methods for background generation do not yield good results in intersections with heave traffic and most of the early studies measure only point information. In this paper, we propose user-controlled iris method to remedy the deficiency of auto iris and design flame difference-based background generation method which performs far better in complicated intersections. We also propose measurement method for spatial traffic information such as interval volume/lime/velocity, queue length, and turning/forward traffic flow. We obtain measurement accuracy of 95%∼100% when applying above mentioned new methods.

  • PDF

A Robust Approach to Automatic Iris Localization

  • Xu, Chengzhe;Ali, Tauseef;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.116-122
    • /
    • 2009
  • In this paper, a robust method is developed to locate the irises of both eyes. The method doesn't put any restrictions on the background. The method is based on the AdaBoost algorithm for face and eye candidate points detection. Candidate points are tuned such that two candidate points are exactly in the centers of the irises. Mean crossing function and convolution template are proposed to filter out candidate points and select the iris pair. The advantage of using this kind of hybrid method is that AdaBoost is robust to different illumination conditions and backgrounds. The tuning step improves the precision of iris localization while the convolution filter and mean crossing function reliably filter out candidate points and select the iris pair. The proposed structure is evaluated on three public databases, Bern, Yale and BioID. Extensive experimental results verified the robustness and accuracy of the proposed method. Using the Bern database, the performance of the proposed algorithm is also compared with some of the existing methods.

Detection of Special Effects with Circular Moving Borders (원형의 이동 경계선을 가지는 특수효과 검출)

  • Jang, Seok-Woo;Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3184-3190
    • /
    • 2011
  • In this paper, we propose a method to detect Iris Round wipe transitions with circular moving borders in digital video data. The suggested method robustly extracts circular moving borders from the input image using improved Hough transform, and finally detects Iris Round wipes by effectively analyzing their moving directions and shapes. In order to evaluate the performance of the suggested algorithm, the experimental results show that the proposed method can effectively detect Iris Rounds with circular moving borders in various video data.

Data Fusion Algorithm based on Inference for Anomaly Detection in the Next-Generation Intrusion Detection (차세대 침입탐지에서 이상탐지를 위한 추론 기반 데이터 융합 알고리즘)

  • Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.233-238
    • /
    • 2016
  • In this paper, we propose the algorithms of processing the uncertainty data using data fusion for the next generation intrusion detection. In the next generation intrusion detection, a lot of data are collected by many of network sensors to discover knowledge from generating information in cyber space. It is necessary the data fusion process to extract knowledge from collected sensors data. In this paper, we have proposed method to represent the uncertainty data, by classifying where is a confidence interval in interval of uncertainty data through feature analysis of different data using inference method with Dempster-Shafer Evidence Theory. In this paper, we have implemented a detection experiment that is classified by the confidence interval using IRIS plant Data Set for anomaly detection of uncertainty data. As a result, we found that it is possible to classify data by confidence interval.

Harris Corner Detection for Eyes Detection in Facial Images

  • Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.373-376
    • /
    • 2013
  • Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.

  • PDF