In this paper, an USB-OTG (Uiversal Serial Bus On-the-go) interface module was designed with the iris information for personal identification. The image recognition algorithm which was searching face and iris areas, was proposed with pixel differences from eye blinking after several facial images were captured and then detected without any activities like as pressing the button of smart phone. The region of pupil and iris could be fast involved with the proper iris area segmentation from the pixel value calculation of frame difference among the images which were detected with two adjacent open-eye and close-eye pictures. This proposed iris recognition could be fast processed with the proper grid size of the eye region, and designed with the frame difference between the adjacent images from the USB-OTG interface with this camera module with the restrict of searching area in face and iris location. As a result, the detection time of iris location can be reduced, and this module can be expected with eliminating the standby time of eye-open.
Yoon, Woong-Bae;Kim, Tae-Yun;Oh, Ji-Eun;Kim, Kwang Gi
Journal of Korea Multimedia Society
/
v.16
no.12
/
pp.1385-1392
/
2013
There is a variety of researches about recognition system using biometric data these days. In this study, we propose a new algorithm, uses simultaneous equation that made of the edge of objects, to segment an iris region without threshold values from an anterior eye image. The algorithm attempts to find a center area through calculated outskirts information of an iris, and decides the area where the most points are accumulated. To verify the proposed algorithm, we conducted comparative experiments to Hough transform and Daugman's method, based on 50 images anterior eye images. It was found that proposed algorithm is 5 and 75 times faster than on each algorithm, and showed high accuracy of detecting a center point (95.36%) more than Hough transform (92.43%). In foreseeable future, this study is expected to useful application in diverse department of human's life, such as, identification system using an iris, diagnosis a disease using an anterior image.
This paper describes a system of detecting multi-views faces and estimating their face poses in an omni-directional camera environment for non-intrusive iris recognition. The paper is divided into two parts; First, moving region is identified by using difference-image information. Then this region is analyzed with face-color information to find the face candidate region. Second part is applying PCA (Principal Component Analysis) to detect multi-view faces, to estimate face pose.
Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.705-708
/
2018
Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.
A support vector machine (SVM) is supposed to provide a good generalization performance, but the actual performance of a actually implemented SVM is often far from the theoretically expected level. This is largely because the implementation is based on an approximated algorithm, due to the high complexity of time and space. To improve this limitation, we propose ensemble of SVMs by using Bagging (bootstrap aggregating) and Boosting. By a Bagging stage each individual SVM is trained independently using randomly chosen training samples via a bootstrap technique. By a Boosting stage an individual SVM is trained by choosing training samples according to their probability distribution. The probability distribution is updated by the error of independent classifiers, and the process is iterated. After the training stage, they are aggregated to make a collective decision in several ways, such ai majority voting, the LSE(least squares estimation) -based weighting, and double layer hierarchical combining. The simulation results for IRIS data classification, the hand-written digit recognition and Face detection show that the proposed SVM ensembles greatly outperforms a single SVM in terms of classification accuracy.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.2
/
pp.28-38
/
2001
Traffic information can be broadly categorized into point information and spatial information. Point information can be obtained by chocking only the presence of vehicles at prespecified points(small area), whereas spatial information can be obtained by monitoring large area of traffic scene. To obtain spatial information by image processing, we need to track vehicles in the whole area of traffic scene. Image detector system based on global tracking consists of video input, vehicle detection, vehicle tracking, and traffic information measurement. For video input, conventional approaches used auto iris which is very poor in adaptation for sudden brightness change. Conventional methods for background generation do not yield good results in intersections with heave traffic and most of the early studies measure only point information. In this paper, we propose user-controlled iris method to remedy the deficiency of auto iris and design flame difference-based background generation method which performs far better in complicated intersections. We also propose measurement method for spatial traffic information such as interval volume/lime/velocity, queue length, and turning/forward traffic flow. We obtain measurement accuracy of 95%∼100% when applying above mentioned new methods.
In this paper, a robust method is developed to locate the irises of both eyes. The method doesn't put any restrictions on the background. The method is based on the AdaBoost algorithm for face and eye candidate points detection. Candidate points are tuned such that two candidate points are exactly in the centers of the irises. Mean crossing function and convolution template are proposed to filter out candidate points and select the iris pair. The advantage of using this kind of hybrid method is that AdaBoost is robust to different illumination conditions and backgrounds. The tuning step improves the precision of iris localization while the convolution filter and mean crossing function reliably filter out candidate points and select the iris pair. The proposed structure is evaluated on three public databases, Bern, Yale and BioID. Extensive experimental results verified the robustness and accuracy of the proposed method. Using the Bern database, the performance of the proposed algorithm is also compared with some of the existing methods.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.7
/
pp.3184-3190
/
2011
In this paper, we propose a method to detect Iris Round wipe transitions with circular moving borders in digital video data. The suggested method robustly extracts circular moving borders from the input image using improved Hough transform, and finally detects Iris Round wipes by effectively analyzing their moving directions and shapes. In order to evaluate the performance of the suggested algorithm, the experimental results show that the proposed method can effectively detect Iris Rounds with circular moving borders in various video data.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.3
/
pp.233-238
/
2016
In this paper, we propose the algorithms of processing the uncertainty data using data fusion for the next generation intrusion detection. In the next generation intrusion detection, a lot of data are collected by many of network sensors to discover knowledge from generating information in cyber space. It is necessary the data fusion process to extract knowledge from collected sensors data. In this paper, we have proposed method to represent the uncertainty data, by classifying where is a confidence interval in interval of uncertainty data through feature analysis of different data using inference method with Dempster-Shafer Evidence Theory. In this paper, we have implemented a detection experiment that is classified by the confidence interval using IRIS plant Data Set for anomaly detection of uncertainty data. As a result, we found that it is possible to classify data by confidence interval.
Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.373-376
/
2013
Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.