• Title/Summary/Keyword: Iris Data Classification

Search Result 43, Processing Time 0.02 seconds

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

TS Fuzzy Classifier Using A Linear Matrix Inequality (선형 행렬 부등식을 이용한 TS 퍼지 분류기 설계)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • his paper presents a novel design technique for the TS fuzzy classifier via linear matrix inequalities(LMI). To design the TS fuzzy classifier built by the TS fuzzy model, the consequent parameters are determined to maximize the classifier's performance. Differ from the conventional fuzzy classifier design techniques, convex optimization technique is used to resolve the determination problem. Consequent parameter identification problems are first reformulated to the convex optimization problem. The convex optimization problem is then efficiently solved by converting linear matrix inequality problems. The TS fuzzy classifier has the optimal consequent parameter via the proposed design procedure in sense of the minimum classification error. Simulations are given to evaluate the proposed fuzzy classifier; Iris data classification and Wisconsin Breast Cancer Database data classification. Finally, simulation results show the utility of the integrated linear matrix inequalities approach to design of the TS fuzzy classifier.

Performance Improvement of LVQ Network for Pattern Classification (패턴 분류를 위한 LVQ 네트워크의 성능 개선)

  • 정경권;이정훈;김주웅;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.245-248
    • /
    • 2003
  • In this paper, we propose a learning method of the performance improvement of the LVQ network using the radios of the hypersphere with the n-dimensional input vectors. The proposed method determines the reference vectors using the radius of the hypersphere include n+1 set of input vectors in the same class. In order to verify the effectiveness of the proposed method, we performed experiments on the Fisher's IRIS data. The experimental results showed that the proposed method improves considerably on the performance of the conventional LVQ network.

  • PDF

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning (머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.225-230
    • /
    • 2020
  • Machine learning is an algorithm which learns a computer based on the data so that the computer can identify the trend of the data and predict the output of new input data. Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is a way of learning a machine with given label of data. In other words, a method of inferring a function of the system through a pair of data and a label is used to predict a result using a function inferred about new input data. If the predicted value is continuous, regression analysis is used. If the predicted value is discrete, it is used as a classification. A result of analysis, no. 8 (5, 3.4, setosa), 27 (5, 3.4, setosa), 41 (5, 3.5, setosa), 44 (5, 3.5, setosa) and 40 (5.1, 3.4, setosa) in Table 3 were classified as the most similar Iris flower. Therefore, theoretical practical are suggested.

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

A Construction of Fuzzy Model for Data Mining (데이터 마이닝을 위한 퍼지 모델 동정)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.191-194
    • /
    • 2002
  • In this paper, a new GA-based methodology with information granules is suggested for construction of the fuzzy classifier. We deal with the selection of the fuzzy region as well as two major classification problems-the feature selection and the pattern classification. The proposed method consists of three steps: the selection of the fuzzy region, the construction of the fuzzy sets, and the tuning of the fuzzy rules. The genetic algorithms (GAs) are applied to the development of the information granules so as to decide the satisfactory fuzzy regions. Finally, the GAs are also applied to the tuning procedure of the fuzzy rules in terms of the management of the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example-the classification of the Iris data, is provided.

A molecular systematic study of Korean Iris (Iridaceae) based on RAPD analysis (RAPD에 의한 한국산 붓꽃속(Iris)의 계통분류학적 연구)

  • Park, Seon-Joo;Sim, Jeong-Ki;Park, Hong-Duok
    • Korean Journal of Plant Taxonomy
    • /
    • v.32 no.4
    • /
    • pp.383-396
    • /
    • 2002
  • RAPD analyses were compared for 17 taxa of Korean Iris including the subgenus Sisyrinchium and Belamcanda. Eighty scorable RAPD markers were formed from the PCR reactions using 10 random oligoprimers. In this systematic analyses which used neighbor-joining methods including bootstrapping analyses with genetic coefficients, the Korean Iris were divided into three subgenera (Limniris, Crossiris, Pardanthopsis), or two genera (Limniris, Pardanthopsis). The molecular data agree with the previous classification system that recognized two sections and six series for the subgenus Limniris because the subgenus is comprised of four clades in the RAPD analyses. According to the molecula data, the series Chinensis should be divided into two groups. The minutoaurea group is composed of I. koreana, I. odaesanensis, and I. minitoaurea, while the rossi group is comprised of two varieties of I. rossi. The series Tripetalae is closely allied with the series Sibiricae, whereas the series Ensatae is recognized as a sister group to the series Ruthencae. The molecular phylogeny, which was based on RAPD analysis, for the most part agreed with the data proposed by previous authors. This is because the basis of morphological and ITS sequence data suggests that the RAPD markers should be very useful in addressing phylogenetic questions about the genus Iris.

Discretization of Numerical Attributes and Approximate Reasoning by using Rough Membership Function) (러프 소속 함수를 이용한 수치 속성의 이산화와 근사 추론)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.545-557
    • /
    • 2001
  • In this paper we propose a hierarchical classification algorithm based on rough membership function which can reason a new object approximately. We use the fuzzy reasoning method that substitutes fuzzy membership value for linguistic uncertainty and reason approximately based on the composition of membership values of conditional sttributes Here we use the rough membership function instead of the fuzzy membership function It can reduce the process that the fuzzy algorithm using fuzzy membership function produces fuzzy rules In addition, we transform the information system to the understandable minimal decision information system In order to do we, study the discretization of continuous valued attributes and propose the discretization algorithm based on the rough membership function and the entropy of the information theory The test shows a good partition that produce the smaller decision system We experimented the IRIS data etc. using our proposed algorithm The experimental results with IRIS data shows 96%~98% rate of classification.

  • PDF