• Title/Summary/Keyword: Ir-192 선원

Search Result 76, Processing Time 0.029 seconds

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.

Development of Phantom for Evaluate the Suitability of Ir-192 HDR Source with Brachytherapy Tools (근접치료용 하나로 생산 Ir-192 선원의 임상기기 적합성평가용 팬톰개발)

  • Shin, Kyo Chul;Choi, Sang Gyu;Kim, Ki Hwan;Son, Kwang Jae;Jeong, Dong Hyeok;Kim, Jeung Kee
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.171-175
    • /
    • 2013
  • Applicator of various kind of number ten kinds is used to raise from efficiency of brachytherapy to maximum. The compatibility of radiation source and applicator is very important subject for safety brachytherapy. Developed high dose rate brachytherapy source through Hanaro nuclear reactor in Korea Atomic Energy Research Institute and improve compatibility with using equipment in present. In this research, we wished to evaluate stability mechanical safety of radiation source and we developed phantom for evaluate several quality about Ir-192 sealed source that improve newly in Korea Atomic Energy Research Institute and is improved. The result for suitability of Ir-192 HDR source with brachytherapy tools that did normal operation in 2.2~2.7 cm extent about change of equal curvature and consider change of sudden curvature that did normal operation in radius 1.5~1.8 cm extent.

Measurement of Ir-192 Source Activity for High Dose Rate Brachytherapy (고 선량률 근접치료시 사용되는 Ir-192 선원의 방사능 평가)

  • 최동락;허승재;안용찬;임도훈;김대용;우홍균
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • Ir-192 source activity for high dose rate brachytherapy is measured using Farmertype ionization chamber. The source-to-chamber distance is 10 cm and the measured charge unit is converted to activity unit. The measured values are compared to the values provided from vendor. Because of time dependency of Ir-192 source activity, the activities are regularly checked and compared to calculated values. As the accuracy of Ir-192 source activity is depend on the mechanical measurement setup, we estimated the precision of remote controlled source dwell position using home-made device and film scanner. The difference between measured and predicted dwell position is within 1 mm. As a result, the errors of source activity are 0.7${\pm}$1.5 % for measured and vendor-provided values and 0.l${\pm}$1.2% for measured and time-dependent calculated vlaues. In conclusion, our measured activity has been comparable to the values provided from vendor and our brachytherapy unit has been very accurate until now. Regular quality control of brachytherapy is essential for successful treatment which depends on the accuracy of source position and activity.

  • PDF

Comparison of Calibration Methods of $^{192}\textrm{Ir}$ Sources for High Dose Rate Brachytherapy (고선량률 근접조사치료용 이리듐-192 방사성동위원소의 교정방법 비교연구)

  • Huh Hyun Do;Park Sung Yong;Lee Rena J;Shin Dong Oh;Kwon Soo Il;Loh John J K;Choi Jinho
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.192-196
    • /
    • 2004
  • The activity of Ir-192 sources for high dose rate (HDR) Brachytherapy in Korea were measured by using the well-type chamber and using the calibration Jig with the Farmer-type ionization chamber to compare the manufacturer certificated source strength which is supplied with each new Ir-192 source. The activity of two different source models used in six hospitals were measured. The range of measured activities to the manufacturer's suggested ones was -2.40% to +3.31% for the calibration Jig and -3.12% to 0.00% for the well-type chamber system. The source strength values given by the manufacturer for the 6 sources were within ${\pm}5%$ for the two different measuring equipment. Our results demonstrate that well-type chamber as wall as Farmer-type chamber system are appropriate system for the routine source calibration procedures in HDR brachytherapy. Whenever a new source is installed to use in clinics, a source calibration should be carried out.

  • PDF

Dose modeling and its Application of Ir-192 for substitution of Ralstron Brachytherapy source (Ralstron 선원대체형 Iridium-192 선원의 선량모델링과 응용)

  • 김옥배;최태진;김진희;이호준;박정호;김성규;조운갑;한현수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • We designed high dose rate Ir-192 source which was prepared for substitute the Co-60 source in Ralstron unit (Simatsu, Japan) which is supplied for cervical cancer treatment. The source dimension is 1.5 mm in a diameter and 1.5mm thickness of cylinder and encapsulated with 3 mm diameter of stainless steel(SUS316L) to substituted for the Co-60 source size. The Ir-192 source was prepared the dose model for tissue dose computation through the experimental determination of apparent activity and applied the empirical tissue correction factors extended to 20cm distance. The tissue dose model was applied the 4.69 R/cm-mCi-hr gamma constant and the ratio of energy absorption coefficient of water to that of air showed 1.112 include filteration of the self-absorptions. In this experiments, we prepared the dose computation software to clinical usefulness.

  • PDF

$^{192}$Ir 선원의$\gamma$선 자기흡수효과 측정

  • 조운갑;한현수;박춘득;박울재;이철영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.752-756
    • /
    • 1998
  • 산업용 및 의료용으로 사용되는 $^{192}$ Ir 방사선원에 대한 $\psi$선 자기흡수효과인자를 실험을 통하여 구하였다. 이를 위하여 3 mm $\psi$ x 3 mm t, 2.5 mm $\psi$ x 2.5 mm t, 2 mm $\psi$ x 2 mm Ir의 원주형 Ir 표적과 3 mm $\psi$ x 0.25 mm t, 3 mm $\psi$ x 0.1 mm t의 원판형 Ir 표적을 하나로의 PTS(Pneumatic Transport System)조사공에서 중성자 조사하였다. 이온전리함을 사용하여 각 Ir 표적의 방사능을 측정하고 계산에 의해서 구한 생성방사능 값과의 비를 구하는 방법으로 $^{192}$ Ir의 ${\gamma}$선 자기흡수효과인자를 구하였다. 이 값들은 원주형 표적에 대하여 각각 0.614, 0.687, 0.704 였고 원판형 표적에 대하여 각각 0.827, 0.875 였다. 원주형 Ir 표적내부의 중성자 자기흡수효과의 정도를 알아보기 위하여 2.5 mm $\psi$ x 0.25 mm t Ir 표적 10장을 포개어 중성자 방사화시킨 후 각 표적의 방사능을 측정한 결과 가장 바깥쪽 표적의 방사능이 중심부에 위치한 표적보다 약 2배정도 방사화가 많이 일어남을 알 수 있었다. 이번에 구한 ${\gamma}$선 자기흡수효과인자는 향후 산업용 및 의료용으로 사용되는 $^{192}$ Ir 방사선원의 사용자에게 제공되는 최종방사능을 평가하는데 유용하게 사용될 수 있다.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

Quality Correction for Ir-192 Gamma Rays in Air Kerma Strength Dosimetry Using Cylindrical Ionization Chambers (원통형 전리함을 이용한 Ir-192 선원에 대한 공기커마세기 측정 시 선질보정에 관한 연구)

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Kim, Ki-Hwan;Oh, Young-Kee;Kim, Soo-Kon;Lee, Kang-Kyoo;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • The quality correction in the air kerma dosimetry for Ir-192 using farmer type ionization chambers calibrated by Co-60 quality is required. In this study we determined quality factor ($k_u$) of two ionization chambers of PTW-N30001 and N23333 for Ir-192 source using dosimetric method. The quality factors for energy spectrum of microSelectron were determined as $k_u$=1.016 and 1.017 for PTW-N30001 and N23333 ionization chambers respectively. We applied quality factors in air kerma dosimetry for microSelectron source and compared with reference values. As a results we found that the differences between reference air kerma rate and measured it with and without quality correction were about -0.5% and -2.0% respectively.

  • PDF

Development of $^{192}Ir$ Small-Focal Source for Non-Destructive Testing Application by Using Enriched Target Material (고농축 표적을 이용한 비파괴검사용 $^{192}Ir$ 미세초점선원 개발)

  • Son, K.J;Hong, S.B.;Jang, K.D.;Han, H.S.;Park, U.J.;Lee, J.S.;Kim, D.H.;Han, K.D.;Park, C.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • A $^{192}Ir$ small-focal source has been developed by using the HANARO reactor and the radioisotope production facility at the Korea Atomic Energy Research Institute (KAERI). The small-focal source with the dimension of 0.5 mm in diameter and 0.5 mm in length was fabricated as an aluminum-encapsulated form by a specially designed pressing equipment. For the estimation of the radioactivity, neutron self-shielding and ${\gamma}-ray$ self-absorption effects on the measured activity was considered. From this estimation, it is realized that $^{192}Ir$ small-focal sources over 3 Ci activities can be produced from the HANARO. Field performance tests were performed by using a conventional source and the developed source to take images of a computer CPU and a piece of a carbon steel. The small-focal source showed better penetration sensitivity and geometrical sharpness than the conventional source does. It is concluded from the tests that the focal dimension of this source is small enough to maximize geometrical sharpness in the image taking for the close proximity shots, pipeline crawler applications and contact radiography.

The Activity Check of Brachytherapy Isotope (근접치료동위원소의 Activity Check)

  • Kim, Gun-Oh;Lee, Byung-Koo;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • An isotope Ir-192, which is used in brachytherapy depends on import in whole quantities. There are a few ways for its activity. measurement using Welltype chamber or the way to rely on authentic decay table of manufacturer. In-air dosimetry using Farmer Chamber, etc. In this paper, let me introduce the way using Farmer chamber which is easier and simple. With the Farmer chamber and source calibration jig, take a measurement the activity of an isotope Ir-192 and compare the value with the value from decay table of manufacturer and check the activity of source. The result of measurement, compared the value from decay table, by ${\pm}2.1\%$. (which belongs to recommendable value for AAPM ${\pm}5\%$ as difference of error range) It is possible to use on clinical medicine. With the increase in use of brachytherapy, the increase of import is essential. And an accurate activity check of source is compulsory. For the activity check of source, it was possible to use Farmer chamber and source calibration jig without additional purchase of Well type chamber.

  • PDF