• Title/Summary/Keyword: Ionic liquid.

Search Result 472, Processing Time 0.022 seconds

Solid Electrolyte Composed of Poly(vinyl alcohol) and Oligo(3,4-ethylenedioxythiophene) Having a Crosslinked Structure (가교 구조를 갖는 poly(vinyl alcohol)과 oligo(3,4-ethylenedioxy-thiophene)으로 이루어진 고체 전해질)

  • Gyo Jun Song;Min Su Kim;Nam-Ju Jo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2024
  • Currently, lithium secondary batteries have been used as medium- or large-sized energy sources such as electric vehicles and energy storage system (ESS) due to their high energy and eco-friendly characteristics. Currently commercialized lithium secondary batteries do not fully meet the demands for high energy density and safety. Many studies on solid electrolytes are being conducted to satisfy these requirements. In order to commercialize a solid electrolyte, it is important to supplement the low ion conductivity and high interface resistance with an electrode compared to the organic liquid electrolyte. Therefore, in this study, oligo(3,4-ethylenedioxythiophene (EDOT)) is added to poly(vinyl alcohol) (PVA), which is a polymer matrix with ion conductivity and sticky characteristics, to decrease the interfacial resistance with the same type of polythiophene (PTh)-based electrode. In addition, the addition of porous silicon dioxide (SiO2) filler improves lithium salt dissociation ability and increases ionic conductivity. And the electrochemical stability of the solid electrolyte, which has been lowered due to additives, is improved by introducing a cross-linked structure using boric acid (BA).

Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode (다공성 그래핀 필름의 슈퍼캐패시터 전극용 전기화학적 특성)

  • Choi, Bong Gill;Huh, Yun Suk;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.754-757
    • /
    • 2012
  • In this report, we fabricate the porous graphene films through embossing process and vacuum filtration method and demonstrate their superior electrochemical properties as supercapacitor electrode materials. Insertion/removal of polystyrene nanoparticles between the graphene sheets allows to provide pore structures, leading to the effective prevention of restacking in graphene films. As-prepared porous graphene films have a large surface area, a bicontinuous porous structures, high electrical conductivity, and excellent mechanical integrity. The electrochemical properties of the porous graphene films as electrode materials of supercapacitor are investigated by using aqueous $H_2SO_4$ and ionic liquid solution under three-electrode system. The porous graphene films exhibit a high specific capacitance (284.5 F/g), which is two-fold higher than that of packing graphene films (138.9 F/g). In addition, the rate capability (98.7% retention) and long-term cycling stability (97.2%) for the porous graphene films are significantly enhanced, due to the facilitated ion mobility between the graphene layers.

Nano Ceramic Coating on Polypropylene Separator for Safety-Enhanced Lithium Secondary Battery (고안전성 리튬이차전지 구현을 위한 나노 세라믹 코팅 분리막 제조 및 전기화학특성 분석)

  • Lee, Jungmo;Jeon, Hyunkyu;Han, Taeyeong;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Herein, we have fabricated an ultrathin aluminum oxide ($Al_2O_3$) coated PP separator by using a RF sputter deposition process. Approximately 20 nm thickness coating layer on the bare PP separator was formed at the power of 55 W for 2 minutes without thermal damage. Whereas only permeability of the coated separator was degraded slightly, other properties such as thermal stability, uptake amount of liquid electrolyte, and ionic conductivity were improved comparing to the bare PP separator. As a result, an only 20-nm-thick $Al_2O_3$ coating layer could improve the rate capability compared with a bare PP separator under a high current density.

A Study on the Flooding Phenomena of Cathode Flow Path with Operating Temperatures in a PEM Fuel Cell (고분자전해질형 연료전지의 작동 온도에 따른 공기극 유로 내 플러딩 현상에 관한 연구)

  • Kim Han-Sang;Ha Taehun;Min Kyoungdoug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.326-329
    • /
    • 2005
  • Proton exchange membrane (PEM) should be sufficiently hydrated with proper water management to maintain a good ionic conductivity and performance of a PEM fuel cell. However. cathode flooding resulting from excess water can impede the transport of reactants and hence deteriorate the fuel cell performance. For the PEM fuel cell to be commercially viable as vehicle or portable applications, the flooding on the cathode side should be minimized during the fuel cell operation. In this study, visualization technique was applied to understand the cathode flooding phenomena on the cathode side of a PEM fuel cell. To this end. a transparent PEM unit fuel cell wi th an act ive area of $25cm^2$ was designed and manufactured to allow for the visualization of cathode channel with performance characteristics. Two-phase flow resulting from the electro-chemical reaction of fuel cell was investigated experimentally. The images photographed by CCD camera with cell operating temperatures $(30\~50^{\circ}C)$ were presented. Results indicated that the flooding on the cathode side first occurs near the exit of cathode channel. As the operating temperature of fuel cell increases. it was found that liquid water droplets tend to evaporate easily and it can have an influence on lowering the flooding level. It is expected that this study can effectively contribute to the detailed researches on modeling water transport of an operating PEM fuel cell including two-phase flow phenomena.

  • PDF

Effect of Tripolyphosphate (TPP) on the Controlled Release of Cyclosporin A from Chitosan-coated Lipid Microparticles

  • Cheon, Ji-Woong;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.59-63
    • /
    • 2009
  • Soybean phosphatidylcholine microparticles loaded with cyclosporin A (CsA) were prepared by the modified emulsion solvent diffusion and ionic gelation method, in which chitosan on the surface of the microparticles was crosslinked with various concentrations of tripolyphosphate (TPP). The morphology of the particles was characterized by scanning electron microscopy (SEM). The change of particle size and zeta-potential by chitosan on the surface of the lipid microparticles were systematically observed. The encapsulation efficiency and loading capacity of CsA in the particles were determined by high performance liquid chromatography (HPLC). In vitro release kinetics was studied using the dialysis method. In the results, the mean particle size and the zeta-potential of lipid microparticles increased when the attached chitosan was cross-linked (from 2.5 to 6.2 ${\mu}m$ and from -37.0 to +93.0 mV, respectively). The cyclosporin A-loaded lipid microparticles appeared discrete and spherical particles with smooth surfaces. The encapsulation efficiency of CsA was between 79% and 90% while the loading capacity was between 41% and 56%. In vitro release study showed that the crosslinkage of chitosan by TPP significantly delayed the release of CsA from the particles in a concentration-dependent manner. Thus, the release of CsA from the lipid microparticles could be controlled by tripolyphosphate used as a cross-linking agent.

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

Optimum Conditions of Lysozyme Extraction Using Reversed Micelles (역미셀을 이용한 Lysozyme 추출 최적조건)

  • Chun, Byung-Soo;Kim, Suk-Kyoo;Yoon, Sung-Ok;Song, Seung-Koo
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.661-664
    • /
    • 1999
  • Proteins were extracted from an aqueous phase with reversed micelles. The effect of pH, and salt concentration on the solubilization of lysozyme in AOT/isooctane solution was studied to explore the potential for employing this solvent system in the large-scale recovery and concentration of proteins using liquid extraction. For pH values below the isoelectric point, pl of the protein, solubilization was high, probably owing to strong electrostatic interactions between the positively charged proteins and the anionic surfactant heads forming the inner micelle wall. At low ionic strength complete solubilization of the protein was observed. A pH higher than the pl of lysozyme and a salt concentration lower than that of the water pool were required for the recovery aqueous phase to ensure the back extraction of lysozyme from the AOT reversed micelles.

  • PDF

Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells (고분자 분쇄 기술을 활용한 고체 알칼리연료전지용 이오노머 바인더 용액 개발)

  • Shin, Mun-Sik;Kim, Do-Hyeong;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • In this study, an anion-exchange ionomer solution was prepared by grinding poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in liquid nitrogen for solid alkaline fuel cells (SAFCs). Type of quaternized PPO (QPPO) solutions was controlled by grinding time. The ionomer binder solutions were characterized in terms of dispersity, particle size, and electrochemical properties. As a result, ionomer binder solutions using grinded polymer showed higher dispersion and smaller particle size distribution than that using non-grinded polymer. The highest ionic conductivity and IEC of the membrane recast by using BPPO-G120s were $0.025S\;cm^{-1}$ and $1.26meq\;g^{-1}$, respectively.

Wet Synthesis of Hydroxylammonium Nitrate (HAN) and Solid Phase Extraction Using Dual Organic Solvents (수산화암모늄나이트레이트(HAN)의 습식합성 및 이중 유기용매를 이용한 고체상 추출)

  • Kim, Sohee;Kwon, Younja;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.317-322
    • /
    • 2020
  • Hydroxylammonium nitrate (HAN; NH3OHNO3) is an ionic energy material having a low melting temperature and vapor pressure with a high oxygen balance. To utilize it as an oxidizer for a high content liquid mono-propellant, a dual solvent was used to obtain HAN in a solid particulate form. The dehydrated crystal from an aqueous HAN was washed with dual organic solvents including acetone and ethanol, finally resulting in the moisture content of 13.8 wt%. When acetone was applied as a single solvent, the maximum synthesis yield of 88%, the HAN content evaluated by TGA of 86.2%, and the decomposition temperature ranged 160℃ to 205℃ were achieved.

Preparation and Electrical Conductivity of $\beta$-$Al_2O_3$ ($\beta$-$Al_2O_3$의 제조 및 전기전도도)

  • 송효일;김응수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 1986
  • The preparation and electrical conductivity of $\beta$-$Al_2O_3$ are investigated as a function of $Na_2O$ content from the-oretical composition of $\beta$-$Al_2O_3$ to that of $\beta$"-$Al_2O_3$. $\beta$-$Al_2O_3$ $\beta$"$Al_2O_3$$\alpha$-Al2O3 and ${\gamma}$-NaAlO2 phases appear in the calcined powder at 125$0^{\circ}C$ for 2 hours. The majoity phase is $\beta$-$Al_2O_3$ in sintered specimens at 155$0^{\circ}C$ and 1$650^{\circ}C$ for 30 mins respectively and ${\gamma}$-4NaAlO_2$ phase also exists when Na2O content is over 10.39w/o ${\gamma}$-4NaAlO_2$ phase does not affect the grain growth of $\beta$-$Al_2O_3$ in sintering at 155$0^{\circ}C$ but acts as a reactive liquid for the abnormal grain growth of $\beta$-$Al_2O_3$in sintering at 1$650^{\circ}C$ The electrical conduction of $\beta$-$Al_2O_3$is predominated by 4Na^+$ ion. Contribution of ionic con-ductivity to total conductivity is gradually decreased with increasing temperature at given oxygen pressure and to -tal conductivity is increased by positive hole due to interstitial oxygen with increasing oxygen pressure.

  • PDF