• Title/Summary/Keyword: Ionic liquid.

Search Result 469, Processing Time 0.023 seconds

Mechanisms of sulfate ionic diffusion in porous cement based composites

  • Gospodinov, P.;Mironova, M.;Kazandjiev, R.
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.273-284
    • /
    • 2007
  • The paper considers a theoretical model for the study of the process of transfer of sulfate ions in saturated porous media - mineral composites. In its turn, the model treats diffusion of sulfate ions into cement based composites, accounting for simultaneous effects such as filling of micro-capillaries with ions and chemical products and liquid push out of them. The proposed numerical algorithm enables one to account for those simultaneous effects, as well as to model the diffusive behavior of separate sections of the considered volume, such as inert fillers. The cases studied illustrate the capabilities of the proposed model and those of the algorithm developed to study diffusion, considering the specimen complex configuration. Computations show that the theoretical assumptions enable one to qualitatively estimate the experimental evidence and the capabilities of the studied composite. The results found can be used to both assess the sulfate corrosion in saturated systems and predict and estimate damage of structures built of cement-based mineral composites.

Synthesis of Two-Component Titanate Powders Using Ethylene Glycol Solution (에틸렌글리콜 용액을 이용한 2성분계 Titanate 분말의 합성)

  • 이상진;권명도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.346-351
    • /
    • 2002
  • Pure and fine, two-component titanate powders (barium titanate, calcium titanate etc.) were synthesized by an ethylene glycol method. Titanium isopropoxide and other metal ionic salts were dissolved in liquid-type ethylene glycol without any precipitation. In non-aqueous system, the amount of ethylene glycol affected the solubility and homogeneity of metal cation sources in the solution. At the optimum amount of the polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. Most of the synthesized powders had sub-micron or nano-size primary particles after calcination and the agglomerated calcined powders were easily ground by ball milling process. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after ball milling. The crystallization behavior and the microstructures of the calcined powders were affected on the ethylene glycol content.

Solid State Dye-Sensitized Solar Cells Employing Polymer Electrolytes : Oligomer Approach

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Choen
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.63-64
    • /
    • 2006
  • The solid state dye-sensitized solar cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5 % at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs: "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the efficiency has also been investigated.

  • PDF

Grain-Boundary Conduction in Solid Oxide Electrolyte (산화물 고체전해질의 입계전도)

  • Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.683-689
    • /
    • 2007
  • Grain-boundary conduction in the fluorite-structure solid oxide electrolytes such as acceptor-doped zirconia and ceria were reviewed. The siliceous impurity, even several hundreds ppm, affects the ionic conduction across grain boundary to a great extent. Various approaches to improve grain-boundary conduction in fluorite-structure oxide electrolytes have been investigated, which include (1) the scavenging of siliceous phase by the reaction with second phase, (2) the gathering of intergranular siliceous phase into a discrete configuration and (3) the dewetting of intergranular liquid phase by post-sintering heat treatment.

A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid (정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석)

  • 김태진
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 1989
  • The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.

  • PDF

Modeling of sulfate ionic diffusion in porous cement based composites: effect of capillary size change

  • Gospodinov, Peter N.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media - cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries (pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect on the distribution of ion concentration within the specimen are investigated. Relations for the distribution of the capillary relative radius and volume within the composite under consideration are found. The numerical algorithm used is further completed to consider capillary size change and the effects accompanying sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from mineral composites is numerically studied, accounting for the change of material capillary size and volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the composite as a result of sulfate ion diffusion.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

Absorption and Regeneration of [eeim] Ionic liquid ([eeim]이온성액체의 흡수 및 재생특성)

  • Baek, Geun-Ho;You, Seung-Han;Lee, Jung-Hyuk;Choi, Hee-Young;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1119-1122
    • /
    • 2010
  • 본 논문에서는 상용 이온성 액체를 대체하기 위해 손쉽게 구입할 수 있는 원료물질을 사용하여 이온성 액체를 실험실 규모로 제조한 후 고압 연소전 조건에서 이산화탄소의 용해도 및 재생력을 측정하기 위해 기-액 흡수평형장치를 이용하여 연구하였다. [eeim]ethyl sulfite를 제조하여 흡수실험을 실시한 결과 흡수평형압력이 25bar의 조건에서 0.72 mol $CO_2$ /mol IL의 흡수력을 보였으며, 재생성능은 탈착 전후의 흡수력 차이가 약 9%로 우수한 편이었다. 희석제를 첨가하였을 경우 흡수력은 약 38% 감소하였으나, 합성단계가 간단하며 원료물질이 저렴한 장점을 가지고 있다.

  • PDF

Ab initio 양자화학적 계산을 이용한 이온성 액체의 SO2 흡수능 연구

  • Choe, Jeong-Yong;Kim, Seon-Gyeong;Park, Yeong-Geun;Lee, Jin-Yong
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.39-51
    • /
    • 2014
  • 산성비의 주요 원인인 이산화황($SO_2$)을 배기가스로부터 효과적으로 제거하기 위한 용매 중 이온성 액체(ionic liquid, IL)의 $SO_2$ 흡수능 (absorption capacity)을 양자화학적 방법을 이용하여 평가했다. 이를 위해 hydroxyl ammonium 계열의 양이온 monoethanolammonium, diethanolammonium 2종과 carboxylate 계열의 음이온 acetate, formate 2종을 조합하여 총 4종의 IL을 연구에 적용했다. $SO_2$가 IL의 pair, 양이온 또는 음이온과 complex를 형성할 때로 구분하여 계산 모델을 세웠으며, 열역학적 상태 변화와 오비탈 상호작용 분석을 통해 흡수능을 평가하였다. 계산 결과, 음이온-$SO_2$ complex를 적용했을 때 formate에 비해 acetate가 $SO_2$ 흡수에 유리할 것으로 분석되었으며, 이는 이전의 실험 연구에서 얻어진 흡수능 경향성과도 잘 맞는다.

  • PDF

Study on Electrical Characteristics of Chloromethylated Polyimide

  • Yu, I.H.;Zhong, Z-X;Lee, M.H.;Lee, S.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.472-475
    • /
    • 2005
  • The electrical performances of liquid crystal (LC) cells with chloromethylated polyimide (CMPI) alignment layers were investigated. The CMPI layer was previously reported as a multifunctional layer that does role of LC alignment and planarization layer as well as photo-alignment material with high photosensitivity and excellent thermal stability. The capacitance-voltage (C-V) characteristics of LC cells with CMPI alignment layers were measured. Mechanical rubbing of the CMPI layer did not generate much difference in residual DC when compared to commercial PI. However, the LC cell with photo-oxidation CMPI layer shows a high residual DC value and a corresponding low voltage holding ratio (VHR) due to the photo-induced ionic charges on the alignment layer.

  • PDF