• Title/Summary/Keyword: Ionic concentration

Search Result 733, Processing Time 0.027 seconds

Method for Drying of Crude Extract Obtained by Biomass Extraction Using an Ionic Liquid (이온성 액체를 이용한 바이오매스 추출에 의해 얻어진 추출물의 건조 방법)

  • Kim, Seul Ki;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.374-379
    • /
    • 2016
  • When using an ionic liquid as co-solvent, the extraction efficiency of anticancer agent paclitaxel from biomass was dramatically improved. However, the residual ionic liquid had a significant negative effect on convenient and feasibility of following concentration and drying steps. In this study, a novel method was developed for the effective drying of the crude extract obtained from biomass extraction with ionic liquid. The residual ionic liquid was easily and conveniently removed by drying alone after pre-treatment and additional washing of a sample with water. The optimal crude extract/water ratio and mixing time for pre-treatment and crude extract/water ratio for additional washing were 1:70 (w/v), 4 min, and 1:100 (w/v), respectively. In the microwave-assisted drying process, the drying time was 9-fold shorter than in the vacuum oven drying process.

Effects of Cloud Point of Non-ionic Surfactant on Deinking Efficiency of ONP at High Blending Ratio of OMG (비이온성 계면활성제의 운점이 OMG 배합비가 증가된 폐 신문지 탈묵효율에 미치는 영향)

  • Lee, Tai Ju;Seo, Jin Ho;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.164-169
    • /
    • 2015
  • Nowadays blending ratio of OMG (old magazine) in recovered paper used for manufacturing newspaper have been increased. When large amount of OMG is consumed in newsprint mill, brightness can be improved by inorganic pigments of coating layer. On the other hand decrease in yield of deinking process will be encountered because the pigments can be removed as reject of froth flotation process. Therefore selection of the optimal deinking agent is an important. Non-ionic surfactant have been used widely in newsprint mill. Non-ionic surfactant has amphoteric characteristics. Hydrophilic group is ethylene and propylene oxide that can induce hydrogen bonding with water molecules. In this regard, cloud point is an important parameter in order to control efficiency of deinking process because hydration of the hydrophobic group can be varied according to temperature of a system. In this study, deinking properties of ONP at high blending ratio of OMG was analyzed according to cloud points of non-ionic surfactants. $L^*$, $a^*$, $b^*$, brightness and effective residual ink concentration did not affected by the change of cloud points. Especially, flotation reject decreased significantly according to increase in cloud point of the non-ionic surfactant. Consequently, when a nonionic surfactant having a cloud point higher than the temperature of the system is used, properties of the deinked pulp can be maintained and yield of deinking process can be improved.

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City (충주시 초미세먼지 (PM2.5)의 배출원 기여도 추정에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.437-448
    • /
    • 2015
  • The purpose of this study is to present the source contribution of the fine particles ($PM_{2.5}$) in Chungju area using the CMB (chemical mass balance) method throughout the four seasons in Korea. The Chungju's annual average level of $PM_{2.5}$ was $48.2{\mu}g/m^3$, which exceeded two times higher than standard air quality. Among these particles, the soluble ionic compounds represent 54.2% of fine particle mass. Additionally, the OC concentration in Chungju stayed similar to other domestic cities, while the EC concentration decreased significantly compared to other domestic/international cities. The concentration of sulfur represented the highest composition (8%) among the fine particle compounds. According to the CMB results, the general trend of the $PM_{2.5}$ mass contributors was the following: secondary aerosols (50.5%: ammonium sulfate 26.5% and ammonium nitrate 24.0%) > gasoline vehicle (18.3%) > biomass burning (11.0%) > industrial boiler (6.0%) > diesel vehicles (4.4%). The contribution of the secondary aerosols was the main cause than others. This impact is assumed to be emitted from air pollutants of urban cities or neighbor countries such as China.

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.

Determination of Dissociation Constant of Hydrogen Cupferrate in Water, Dioxane-Water, and Ethanol-Water Solution (물, Dioxane-물 및 Ethanol-물의 混合溶媒에서의 Hydrogen Cupferrate의 酸解離常數의 決定)

  • Kim, Si-Joong;Yoon, Chang-Ju;Chang, In-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.114-118
    • /
    • 1966
  • The glass electrode was empirically calibrated in dioxane-and ethanol-water mixed solvents, by means of which the pH-meter reading could be converted to stoichiometric hydrogen ion concentration. By the potentiometric titration method, the thermodynamic dissociation constants of hydrogen cupferrate (HCup) with variations of ionic concentration in aqueous solution were determined, and by the extrapolation of the constants the new thermodynamic $pK_a$ value, 3.980${\pm}$0.006, at zero ional concentration was obtained. The thermodynamic dissociation constants of HCup in dioxane-and ethanol-water solution were also potentiometrically determined with the changes in composition of organic solvents at 0.01 and 0.05 of the ionic strength(${mu}$) and 25 $^{\circ}C$. The empirical formula of the constants with mole fraction(n) of the organic solvent are as follow: Dioxane-water solution. $pK_a$= 12.96n + 4.10 at ${\mu}$ = 0.01, n = 0.0228∼0.171 $pK_a$= 12.05n + 4.23 at ${\mu}$ = 0.05, n= 0.0228∼0.171 Ethanol-water solution, $pK_a$= 4.0ln + 4.26 at ${\mu}$= 0.01, n= 0.0395∼0.262 $pK_a$= 3.83n + 4.34 at ${\mu}$= 0.05, n= 0.0395∼0.262

  • PDF

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces (액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용)

  • Liu, XiaoYun;Han, Hye Youn;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.506-512
    • /
    • 2017
  • The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils (사질식양토와 식토에서 중금속 이온의 다중 경쟁 흡착)

  • Chung, Doug Y.;Noh, Hyun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.238-246
    • /
    • 2005
  • We conducted this investigation to observe competitive adsorption phenomena among the heavy metals onto the available sorption sites of soil particle surfaces in sandy clay loam and clay soil collected from Nonsan city, Chungnam and Yoosung, Daejeon in Korea, respectively. Polluted and contaminated soils can often contain more than one heavy metal species, resulting in competition for available sorption sites among heavy metals in soils due to complex competitive ion exchange and specific sorption mechanism. And the adsorption characteristics of the heavy metals were reported that the selectivity for the sorption sites was closely related with electropotential and electro negativity carried by the heavy metals. The heavy metals were treated as single, binary and ternary systems as bulk solution phase. Adsorption in multi-element system was different from single-element system as Cr, Pb and Cd. The adsorption isotherms showed the adsorption was increased with increasing equilibrium concentrations. For binary and ternary systems, the amount of adsorption at the same equilibrium concentration was influenced by the concentration of individual ionic species and valence carried by the respective heavy metal. Also we found that the adsorption isotherms of Cd and Pb selected in this experiment were closely related with electronegativity and ionic potential regardless number of heavy metals in solution, while the adsorption of Cr carried higher valance and lower electro negativity than Cd and Pb was higher than those of Cd and Pb, indicating that adsorption of Cr was influenced by ionic potential than by electronegativity. Therefore adsorption in multi-element system could be influenced by electronegativity and ionic potential and valance for the same valance metals and different valance, respectively. But it still needs further investigation with respect to ionic strength and activity in multi-element system to verify sorption characteristics and reaction processes of Cr, especially for ternary system in soils.

A Study on the Characterization of PM$_{2.5}$, PM$_{10}$ Concentration at Asian and Non-Asian Dust in Asan Area (아산지역의 황사/비황사시 PM$_{2.5}$, PM$_{10}$ 농도특성에 관한 연구)

  • Chung, Jin-Do;Hwang, Seung-Min;Choi, Hee-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1111-1115
    • /
    • 2008
  • The characterization of PM$_{2.5}$ and PM$_{10}$ concentration is considered by analysis of ionic and heavy metal component to measured suspended particle at atmosphere in Hoseo university of Asan area. The variation of concentration is studied at the periods of asian dust occured. In asian dust, the PM$_{2.5}$ ratio is decreased from 79.7% to 40.1%, whereas the size-classified mean concentration of suspended particle is increased largely. It is found that the PM$_{2.5}$ ratio is decreased relatively because the coarse particle is increased largely according to the analysis of the mass concentration to divide the fine and coarse particle on 2.1 $\mu$m basis. It is observed that the Ca$^{2+}$ion is about 40 magnifications and Na$^+$, SO$_4{^{2-}}$ ion is increased in sequence in coarse particle, whereas the variation of ionic concentration is slightly increased in the fine particle. Furthermore, Mn, Fe, Zn, and Al are increased in sequence as the result of heavy metal component analysis, and Al is shown the most increased as mass concentration.