• Title/Summary/Keyword: Ionic Fraction

Search Result 86, Processing Time 0.022 seconds

Investigation on Flocculi-floc Interaction and Flocculation in Extracellular Polymeric Substances, Ionic Species and Clay-containing Suspension (생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구)

  • Kim, Jae In;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • Bimodal flocculation describes the aggregation and breakage processes of the flocculi (or primary particles) and the flocs in the water environment. Bimodal flocculation causes bimodal size distribution with the two separate peaks of the flocculi and the flocs. Extracellular polymeric substances and ionic species common in the water environment increase the occurrence of bimodal flocculation and flocculi-floc size distribution, under the flocculation mechanisms of electrostatic attraction and polymeric bridging. This study investigated bimodal flocculation and flocculi-floc size distribution, with respect to the extracellular polymeric substance concentration and ionic strength in the kaolinite-containing suspension. The batch flocculation tests comprising 0.12 g/L of kaolinite showed that the highest flocculation potential occurred at the lowest xanthan gum (as extracellular polymeric substances) concentration, under all the ionic strengths of 0.001, 0.01, and 0.1 M NaCl. Also, it was important to note that the higher ionic strength resulted in the higher flocculation potential, at all the xanthan gum concentrations. The bimodal flocculation and flocculi-floc size distribution became apparent in the experimental conditions, which had low and intermediate flocculation potential. Besides the polymeric bridging flocculation, steric stabilization increased the flocculi mass fraction against the floc mass fraction, thereby developing the bimodal size distribution.

Void Formation Induced by the Divergence of the Diffusive Ionic Fluxes in Metal Oxides Under Chemical Potential Gradients

  • Maruyama, Toshio;Ueda, Mitsutoshi
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.8-18
    • /
    • 2010
  • When metal oxides are exposed to chemical potential gradients, ions are driven to diffusive mass transport. During this transport process, the divergence of ionic fluxes offers the formation/annihilation of oxides. Therefore, the divergence of ionic flux may play an important role in the void formation in oxides. Kinetic equations were derived for describing chemical potential distribution, ionic fluxes and their divergence in oxides. The divergence was found to be the measure of void formation. Defect chemistry in scales is directly related to the sign of divergence and gives an indication of the void formation behavior. The quantitative estimation on the void formation was successfully applied to a growing magnetite scale in high temperature oxidation of iron at 823 K.

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design (혼합물설계법에 의한 Li2O-TeO2-ZnO 유리의 물성에 대한 조성의 가성성인자 분석)

  • Jung, Young-Joon;Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.617-622
    • /
    • 2008
  • In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0$T_g$ was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.

Ionic Equilibria Analysis of $NiCl_2$ in Chloride Solutions by Using Bromley Equation (염산용액에서 Bromley식을 이용한 염화니켈의 이온평형해석)

  • Lee Man-Seung;Lee Gwang-Seop
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.38-45
    • /
    • 2003
  • ionic equilbria of nickel chloride in hydrochloric acid solutions were analyzed by considering chemical equilibria, mass and charge balance equations. The activity coefficients of solutes were calculated by using Bromley equation. It was found that most of species containing nickel existed as $Ni^{2+}$$NiCl^{+}$. The mole fractions of nickel hydroxides were very low in the con-centration ranges considered in this study and the mole fraction of$Ni_4$ $(OH)_{4}^{4+}$ increased greatly with the pH of the solution. The pH values of $NiCl_2$ $-HCl-NaOH-H_2$O system at $25^{\circ}C$ calculated in this study agreed well with those experimentally measured up to ionic strength of 9.4m.

Effect of [EMIM]Ac Recycling on Salix gracilistyla Miq. Pretreatment for Enzymatic Saccharification

  • HAN, Song-Yi;PARK, Chan-Woo;KWON, Gu-Joong;KIM, Jong-Ho;KIM, Nam-Hun;LEE, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.405-413
    • /
    • 2020
  • Recycling of ionic liquid (1-ethyl-3-methylimidazolium acetate, [EMIM]Ac) after the pretreatment of Salix gracilistyla Miq. was conducted and the effect of the recycling number on the enzymatic saccharification yield was investigated. Enzymatic saccharification was performed using an enzyme cocktail (Acremonium cellulase and Optimash BG) at 50 ℃ for 72 h. All recycled [EMIM]Ac samples showed a lower amount of water soluble fraction than pure [EMIM]Ac. On increasing the recycling number from 1 to 4, the amount of water soluble fraction decreased from 18% to 15%. The X-ray diffraction pattern of the products pretreated with recycled [EMIM]Ac showed cellulose I crystalline polymorph. The crystallinity of the product pretreated with recycled [EMIM]Ac was 47-49%, which was lower than 33% of that with pure [EMIM]Ac. The yields of glucose and xylose decreased in the pretreatment with recycled [EMIM]Ac compared to that with pure [EMIM]Ac.

Characteristics of Total Atmospheric Deposition by the Filtration-Sampling Method at Coal-Fired Power Plant Area (여과식 채취방법에 의한 대기오염 총침착물의 특성 -석탄화력발전소 주변지역을 중심으로-)

  • 박정호;조인철;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • Total(=wet+dry) atmospheric depositions were collected by filtration-sampling method at 17 sampling sites of the coal-fired power plant area from September 1999 to January 2000. The soluble and insoluble fractions of deposition were also measured to investigate a suitability of simplified collection method for a long-term monitoring of total deposition. In the study, the 50% of sampled soluble fractions showed the electric conductivity (E.C.) of below 50 $\mu$S/cm and the 42% of them showed the lower pH than 5.0. The monthly mean fluxes of water soluble ionic components; S $O_4$$^{2-}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , N $a^{+}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$ were 168.4 kg/k $m^2$.month, 100.5 kg/k $m^2$.month, 88.6kg/k $m^2$.month, 31.3kg/k $m^2$.month, 25.6 kg/k $m^2$.month, 13.3 kg/k $m^2$.month, 8.7 kg/k $m^2$.month, 43.1kg/k $m^2$.month, respectively. The mean ionic concentration of all sample(n=79) was 314 $\mu$eq/ι, with contributions of 24.2% and 23.0% by [nss-C $a^{2+}$] and [nss-S $O_4$$^{2-}$]. The ratio of [N $O_3$$^{[-10]}$ ]/[nss-S $O_4$$^{2-}$] and [N $H_4$-C $a^{2+}$] were found to be 0.52 and 0.68, respectively.espectively.

Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries

  • Nguyen, Cao Cuong;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-112
    • /
    • 2013
  • Lithium diffusivity of the silicon (Si)-based materials of Si-Cu and $SiO_x$ (x = 0.4, 0.85) with improved interfacial stability to electrolyte have been determined, using variable rate cyclic voltammetry with film model electrodes. Lithium diffusivity is found to depend on the intrinsic properties of anode material and electrolyte; the fraction of oxygen for $SiO_x$ (x = 0.4, 0.85), which is directly related to electrical conductivity, and the electrolyte type with different ionic conductivity and viscosity, carbonate-based liquid electrolyte or ionic liquid-based electrolyte, affect the lithium diffusivity.

Separation of Succinic Acid from Organic Acid Mixture Using Electrodialysis (전기투석에 의한 유기산 혼합물로부터 숙신산의 분리)

  • Kim, Sang-Hun;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.266-271
    • /
    • 2005
  • This paper studied succinic acid recovery from organic acid mixture by using mono-polar membrane electrodialysis. Current efficiency, solute recovery efficiency, energy consumption, and separation factor were measured at various pHs and concentration ratios. The separation factor of succinic acid could be interpreted in terms of ionization degree, molecular weight, ionic conductance, average charge, and initial feed composition.

Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols between Asian Dust and Non-Asian Dust Periods at Background Area of Korea

  • Kim, Won-Hyung;Song, Jung-Min;Ko, Hee-Jung;Kim, Jin Seog;Lee, Joung Hae;Kang, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3651-3656
    • /
    • 2012
  • The size-segregated atmospheric aerosols have been collected at 1100 m site of Mt. Halla in Jeju, a background area in Korea, using 8-stage cascade impact air sampler during Asian dust and non-Asian dust storm periods. Their ionic and elemental species were analyzed, in order to examine the pollution characteristics and composition change between Asian dust and non-Asian dust periods. The major ionic species such as nss-$SO_4{^{2-}}$, $NH_4{^+}$, and $K^+$ were predominantly distributed in the fine particles (below $2.1{\mu}m$ diameter), and besides the $NO_3{^-}$ was distributed more in coarse particle fraction than fine particle. On the other hand, the typical soil and marine species i.e., nss-$Ca^{2+}$, $Na^+$, $Cl^-$, and $Mg^{2+}$, were mostly existed in the coarse particles (over $2.1{\mu}m$ diameter). As well in the elemental analysis of aerosols, the major soil-originated Al, Fe, Ca, and others showed prominently high concentrations in the coarse particle fraction, whereas the anthropogenic S and Pb were relatively high in the fine particle fraction. From the comparison of aerosol compositions between Asian dust and non-Asian dust periods, the concentrations of the soil-originated species such as nss-$Ca^{2+}$, Al, Ca, Fe, Ti, Mn, Ba, Sr have increased as 2.7-4.2 times during the Asian dust periods. Meanwhile the concentrations of nss-$SO_4{^{2-}}$ and $NO_3{^-}$ have increased as 1.4 and 2.0 times, and on the contrary $NH_4{^+}$ concentrations have a little bit decreased during the Asian dust periods. Especially the concentrations of both soil-originated ionic and elemental species increased noticeably in the coarse particle mode during the dust storm periods.

Chemical Composition of Fine Particulate Matter in the Downtown Area of Jeju City (제주시 도심지역 미세먼지의 화학적 조성 특성)

  • Hu, Chul-Goo;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.597-610
    • /
    • 2018
  • This study observed particulate matter ($PM_{2.5}$ and $PM_{10}$) in the downtown area of Jeju City, South Korea, to understand the chemical composition of particulates based on an analysis of the water-soluble ionic species contained in the particles. The mass fraction of the ionic species in the sampled $PM_{10}$ and $PM_{2.5}$ was 44.3% and 42.2%, respectively. In contrast, in Daegu City and Suwon City, the mass fraction of the ionic species in $PM_{2.5}$ was higher than that in $PM_{10}$. The chloride depletion percentage of $PM_{10}$ and $PM_{2.5}$ in Jeju City was higher than 61% and 66%, respectively. The contribution of sea-salt to the mass of $PM_{10}$ (5.9%) and $PM_{2.5}$ (2.6%) in Jeju City was similar to that in several coastal regions of South Korea. The mass ratio of $Cl^-$ to $Na^+$ in the downtown area of Jeju City was comparable to that in some coastal regions, such as the Gosan Area of Jeju Island, Deokjeok Island, and Taean City. The mass fraction of sea-salt in $PM_{10}$ and $PM_{2.5}$ was very low, and the concentration of sodium and chloride ions in $PM_{10}$ was not correlated with those in $PM_{2.5}$ ($R^2$ < 0.2), suggesting that the effects of sea-salt on the formation of particulate matter in Jeju City might be insignificant. The relationship between $NH_4{^+}$ and several anions such as $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$, as well as the relationship between the measurement and calculation of ammonium ion concentration, suggested that sea-salts may not react with $H_2SO_4$, and $(NH_4)_2SO_4$ may be a major secondary inorganic aerosol component of $PM_{2.5}$ and $PM_{10}$ in Jeju City.