• 제목/요약/키워드: Ion-isotopic Exchange Reactions

검색결과 2건 처리시간 0.015초

NON DESTRUCTIVE APPLICATION OF RADIOACTIVE TRACER TECHNIQUE FOR CHARACTERIZATION OF INDUSTRIAL GRADE ANION EXCHANGE RESINS INDION GS-300 AND INDION-860

  • Singare, P.U.
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.93-100
    • /
    • 2014
  • The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, $^{131}I$ and $^{82}Br$ were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate ($min^{-1}$), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log $K_d$ were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of $40.0^{\circ}C$, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

지하공간건설 시 해안인근 담수-해수 혼합대의 지화학적 진화 (Geochemical Evolution of Mixing Zone with Freshwater and Seawater near the Coast Area during Underground Space Construction)

  • 김지연;김병우;권장순;고용권
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권7호
    • /
    • pp.90-102
    • /
    • 2015
  • To understand the hyrogeochemical variation of bedrock aquifer during underground space construction, various graphical methods including multiple-component plots and chemical trends were used to estimate the mixing rate between seawater and freshwater and to investigate the evolution of water quality. The water chemistry and mixing rate between fresh and sea waters, which are generally localized in the construction area (MW-7, in land), shows typical characteristics of freshwater that doesn’t affect its validity as seawater intrusion. Especially, the water chemistry of a MW-4 (coastline) was classified as Na-Cl type, Na-HCO3 type, and Ca-Cl type due to the influence of the seawater intrusion. And hydrogeochemical and isotopic data show that local freshwater is subjected to geochemical processes, such as reverse ion-exchange. Throughout the Chadha’s diagrams, four different case histories with the temporal and spatial variation of groundwaters in the study area were proposed, which is recommended to interpret the hydrogeochemical reactions effectively.