• Title/Summary/Keyword: Ion-exchanged zeolite

Search Result 126, Processing Time 0.031 seconds

Synthesis and Single-crystal Structure of Fully Dehydrated Fully Ca2+exchanged Zeolite Y (FAU), |Ca35.5|[Si121Al71O384]-FAU

  • Seo, Sung-Man;Choi, Sik-Young;Suh, Jeong-Min;Jung, Ki-Jin;Heo, Nam-Ho;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1703-1710
    • /
    • 2009
  • The single-crystal structure of |$Ca_{35.5}$|[$Si_{121}Al_{71}O_{384}$]-FAU, $Ca_{35.5}Si_{121}Al_{71}O_{384}$ per unit cell, a = 24.9020(10) $\AA$, dehydrated at 673 K and 2 ${\times}\;10^{-6}$Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd$\overline{3}$m at 294 K. The large single crystals of zeolite Y (Si/Al = 1.70) were synthesized up to diameters of ${\mu}m\;and\;Ca^{2+}$-exchanged zeolite Y were prepared by ion exchange in a batch method of 0.05 M aqueous Ca($NO_3)_2$ for 4 hrs at 294 K. The structure was refined using all intensities to the final error indices (using only the 971 reflections for which $F_o\;>\;4{\sigma}(F_o))\;R_1$ = 0.038 (based on F) and $R_2$ = 0.172 (based on $F^2$). About 35.5 $Ca^{2+}$ ions per unit cell are found at an unusually large number of crystallographically distinct positions, four. Nearly filling site I (at the centers of the double 6-rings), 14.5 octahedrally coordinated $Ca^{2+}$ ions (Ca-O = 2.4194(24) $\AA$ and O-Ca-O = 87.00(8) and 93.00($8^o$) are found per unit cell. One $Ca^{2+}$ ion per unit cell is located at site II’ in the sodalite cavity and extends 0.50 $\AA$ into the sodalite cavity from its 3-oxygen plane (Ca-O = 2.324(13) $\AA$ and O-Ca-O = 115.5(10)o). The remaining twenty $Ca^{2+}$ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 10 and 10 ions, respectively. Each of these $Ca^{2+}$ ions coordinates to three framework oxygens, either at 2.283(3) or 2.333(5) $\AA$, respectively, and extends either 0.24 or 0.54 $\AA$, respectively, into the supercage from the three oxygens to which it is bound. In this crystal, site I is the most populated; sites II’ and II are only sparsely occupied.$Ca^{2+}$+ appears to fit the octahedral site I best. No cations are found at sites III or III’, which are clearly less favorable for $Ca^{2+}$ ions in dehydrated zeolite Y.

A Study of the Structure and Thermal Property of $Cu^{2+}\;and\;NH_{4}{^+}$ Ion-Exchanged Zeolite A

  • Park, Jong-Yul;Kang, Mi-Sook;Choi, Sang-Gu;Kim, Yang;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.341-346
    • /
    • 1994
  • The frameworks of $(Cu(NH_3)_3OH^+)_x(NH_4^+)_{12-x}-A{\cdot} zH_2O$ which were prepared by the ion-exchange of zeolite A with ammoniac cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution. An energetic calculation was made on the relatively stable $(CuOH^+)_2(NH_4^+)_{10}-A{\cdot} 2H_2O$ prepared by the partial evacuation of $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$. The mean stabilization energies of water, OH-, and $NH_4^+$ ions are -30.23 kcal/mol, -60.24 kcal/mol, and -16.65 kcal/mol, respectively. The results of calculation were discussed in terms of framework stability. The $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$ zeolite shows two step deammoniation reactions. The first deammoniation around 210 $^{\circ}$C (third DSC peak) was attributed to the decomposition of $[Cu(NH_3)_3OH^+]$ ion and the second one around 380 $^{\circ}$C (fourth DSC peak) was ascribed to the decomposition of $NH_4^+$ ion. The activation energies of the first and second deammoniation reactions were 99.75 kJ/mol and 176.57 kJ/mol, respectively.

The Crystal Structure of a Sulfur Sorption Complex of the Dehydrated Partially $Co^{2+}$-Exchanged Zeolite A

  • 염영훈;송성환;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.823-826
    • /
    • 1995
  • The crystal structure of a sulfur sorption complex of the dehydrated partially Co2+ exchanged zeolite A (a=12.058(2) Å) has been determined by single-crystal X-ray techniques. The crystal structure was solved and refined in cubic space group Pm3m at 21(1) ℃. Ion Exchange with aqueous 0.05 M Co(NO3)2 was done by the static method. The crystal of Na4Co4-A was dehydrated at 380 ℃ and 2 × 10-6 Torr for 2 days, followed by exposure to about 100 Torr of sulfur at 330 ℃ for 72 h. Full matrix least-squares refinement converged to R1=0.084 and Rw=0.074 with 102 reflections for which I > 3σ(I). Crystallographic analysis shows that 2.8 Co2+ ions and 4 Na+ ions per unit cell occupy 6-ring sites on the threefold axes. 1.2 Co2+ ions occupy the 8-ring sites on fourfold axes. 2.8 Co2+ ions at Co(1) are recessed 0.66 Å into the large cavity and 4 Na+ ion at Na(1) are recessed 0.77 Å into the sodalite cavity from the (111) plane of O(3)'s. Approximately 16 sulfur atoms were sorbed per unit cell. Two S8 rings, each in a butterfly form, are found in the large cavity. The bond length between S and its adjacent S is 2.27(3) Å. The distance between 6-ring Co2+ ion and its adjacent sulfur is 2.53 (2) Å and that between 8-ring Co2+ ions and its adjacent sulfur is 2.72(9) Å. The angles of S-S'-S and S'-S-S'/ in octasulfur rings are 119.0(2)°and 113.0(2)°, respectively.

Crystal Structure of Dehydrated Partially Ag$^+$-Exchanged Zeolite A treated with Cesium Vapor at 250${^{\circ}C}$

  • Kim, Duk-Soo;Song, Seong-Hwan;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.234-238
    • /
    • 1989
  • The crystal structure of partially $Ag^+$-exchanged zeolite A, $Ag_{3.2}Na_{8.8}$-A, vacuum dehydrated at $360^{\circ}C$ and then exposed to 0.1 torr of cesium vapor for 12 hours at $250^{\circ}C$ has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m (a = 12.262(2)${\AA})\;at\;21(1)^{\circ}C$. The structure was refined to the final error indexes $R_1=0.068\;and\;R_2=0.072$ by using 338 reflections for which $I_o\;>\;3{\sigma}(I_o)$ and the composition of unit cell is $Ag_{3.2}Cs_{8.8}-A.\;3\;Cs^+$ ions lie on the centers of the 8-rings at sites of D4h symmetry. Two crystallographycally different 6-ring $Cs^+$ ions were found: 1.5 $Cs^+$ ions at Cs(2) are located inside of sodalite cavity and 4.3 $Cs^+$ ions at Cs(3) are located in the large cavity. The fractional occupancies observed at Cs(2) and Cs(3) indicate that the existence of at least three types of unit cells with regard to the 6-ring $Cs^+$ ions. For example, 50% of unit cells may have two $Cs^+$ ions at Cs(2) and 4 $Cs^+$ ions at Cs(3). 30% of unit cells may have one Cs+ ion at Cs(2) and 5 $Cs^+$ ions at Cs(3). The remaining 20% would have one $Cs^+$ ion at Cs(2) and 4 $Cs^+$ ions at Cs(3). On threefold axes of the unit cell two non-equivalent Ag atom positions are found in the large cavity, each containing 0.64 and 1.92 Ag atoms, respectively. A crystallographic analysis may be interpreted to indicate that 0.64 $(Ag_5)^+$ clusters are present in each large cavity. This cluster may be viewed as a tetrasilver molecule $(Ag_4)^0$(bond length, 2.84${\AA}$) stabilized by the coordination of one $Ag^+$ ion.

Synthesis of Iron-loaded Zeolites for Removal of Ammonium and Phosphate from Aqueous Solutions

  • Kim, Kwang Soo;Park, Jung O;Nam, Sang Chul
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.267-276
    • /
    • 2013
  • This study presents a comparison of different protocols for the synthesis of iron-loaded zeolites, and the results of their application, as well as that of zeolite-A (Z-A), to the removal of ammonium and phosphate from aqueous media. Zeolites prepared by three methods were evaluated: iron-incorporated zeolites (IIZ), iron-exchanged zeolites (IEZ), and iron-calcined zeolites (ICZ). The optimal iron content for preparing of IIZ, as determined via scanning electron microscopy and X-ray photoelectron spectroscopy analyses, expressed as molar ratio of $SiO_2:Al_2O_3:Fe$, was below 0.05. Ammonia removal revealed that the iron-loaded zeolites have a higher removal capacity than that of Z-A due, not only to ion-exchange phenomena, but also via adsorption. Greater phosphate removal was achieved with IEZ than with ICZ; additionally, no sludge production was observed in this heterogeneous reaction, even though the coagulation process is generally accompanied by the production of a large amount of undesired chemical sludge. This study demonstrates that the developed synthetic iron-loaded zeolites can be applied as a heterogeneous nutrient-removal materials with no sludge production.

Crystal Structure of a Cyclopropane Sorption Complex of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite X

  • 최은영;김양;송성환
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.791-795
    • /
    • 1999
  • The crystal structure of a cyclopropane sorption complex of dehydrated fully Ca (2+) -exchanged zeolite X, Ca46Si100Al92O384· 30C3H6 (a = 24.988(4) Å), has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream of 0.05M aqueous Ca(NO3)2 for four days, followed by dehydration at 460℃ and 2×10 (-6) Torr for two days, and exposure to 100 Torr of cyclopropane gas at 21(1)℃. The structure was determined in this atmosphere and refined to the final error indices R1 = 0.068 and R2 = 0.082, with 373 reflections for which I > 3σ (I). In this structure, Ca 2+ ions are located at two crystallographic sites. Sixteen Ca 2+ ions fill the octahedral sites I at the centers of the hexagonal prisms (Ca-O = 2.412(9)Å). The remaining 30 Ca 2+ ions are at sites Ⅱ; each extends 0.46Å into the supercage (an increase of 0.16Å upon C3H6 sorption) where it coordinates to three trigonally arranged framework oxygens at 2.311(8)Å. Each of the 30 cyclopropane molecules was found to complex to Ca 2+ ions at site II by the induced dipole interaction (Ca-C = 2.99(4)Å). All carbon atoms in each cyclopropane molecule are equivalent and equidistant from Ca 2+ ions at site II with which they are associated.

Crystal Structures of Vacuum Dehydrated Fully $Cd^{2+}$-Exchanged Zeolite A and Its Ethylene Sorption Complex

  • Kwang Nak Koh;Un Sik Kim;Duk Soo Kim;Yang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.178-181
    • /
    • 1991
  • The crystal structure of dehydrated fully $Cd^{2+}$-exchanged zeolite A evacuated at $2{\times}10^{-6}$ Torr and $450^{\circ}C (a = 12.225(2){\AA})$ and of its ethylene sorption complex (a = 12.219(2) ${\AA}$) have been determined by single crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}$. The structures were refined to final error indices, $R_1$ = 0.063 and $R_2$ = 0.065 with 266 reflections and $R_1$ = 0.055 and $R_2$ = 0.062 with 260 reflections, respectively, for which $I{\gg}3{\sigma}(I)$. In both structures, six $Cd^{2+}$ ions lie at two distinguished three-fold axes of unit cell. Dehydrated $Cd_6$-A sorbs 4 ethylene molecules per unit cell at $25^{\circ}C$ (vapor pressure of ethylene is ca. 100 Torr). Each $Cd^{2+}$ ion forms a lateral ${pi}$ complex with an ethylene molecule. Four $Cd^{2+}$ ions exist in a nearly tetrahedral environment, 2.210(7)${\AA}$ apart from three framework oxygen ions (considering ethylene molecule as a monodentate ligand) and $2.67(6){\AA}$ from each carbon atom of ethylene molecule.

Two Crystal Structures of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolte A Reacting with Rubidium Vapor

  • Song, Seong-Hwan;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.258-262
    • /
    • 1993
  • Two single crystals of fully dehydrated $Rb^+$ -exchanged zeolite A have been prepared by the reduction of all $Ca^{2+}$ ions in dehydrated $Ca_6$-A by rubidium vapor. Their structures were determined by single crystal X-ray diffraction methods in the cubic space group Pm3m (a=12.160(2) $^{\AA}$ and 12.166(2) $^{\AA}$) at 22(1)$^{\circ}$C. In these structures, 12.4(2) to 13.3(2) Rb species are found per unit cell, more than 12 Rb$^+$ ions needed to balance the anionic charge of the zeolite framework, indicating that the sorption $Rb^0$ has occurred. In each structure, three $Rb^+$ ions per unit cell are located at the centers of the 8-rings. Six to eight $Rb^+$ ions are found opposite the 6-rings on threefold axes, and three $Rb^+$ ions are found in a sodalite unit. About 0.5 $Rb^+$ ion lies opposite a 4-ring. The structural analysis indicates the presence of a triangular rubidium cluster in the sodalite cavities. The triangular rubidium clusters may be stabilized by the coordination to two and/or three rubidium ions in the large cavity. Therefore, this cluster may be viewed as $(Rb_5)^{4+}$ and/or $(Rb_6)^{4+}$.

The Effect of Co2+-Ion Exchange Time into Zeolite Y (FAU, Si/Al = 1.56): Their Single-Crystal Structures

  • Seo, Sung Man;Kim, Hu Sik;Chung, Dong Yong;Suh, Jeong Min;Lim, Woo Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.243-249
    • /
    • 2014
  • Three single crystals of fully dehydrated $Co^{2+}$-exchanged zeolite Y (Si/Al = 1.56) were prepared by the exchange of $Na_{75}$-Y ($|Na_{75}|[Si_{117}Al_{75}O_{384}]$-FAU) with aqueous streams 0.05 M in $Co(NO_3)_2$, pH = 5.1, at 294 K for 6 h, 12 h, and 18 h, respectively, followed by vacuum dehydration at 673 K. Their single-crystal structures were determined by synchrotron X-ray diffraction techniques in the cubic space group Fd3m at 100(1) K. They were refined to the final error indices $R_1/wR_2$ = 0.0437/0.1165, 0.0450/0.1228, and 0.0469/0.1278, respectively. Their unit-cell formulas are $|Co_{29.1}Na_{11.8}H_{5.0}|[Si_{117}Al_{75}O_{384}]$-FAU, $|Co_{29.8}Na_{11.0}H_{4.4}|[Si_{117}Al_{75}O_{384}]$-FAU, and $|Co_{30.3}Na_{9.5}H_{4.9}|[Si_{117}Al_{75}O_{384}]$-FAU, respectively. In all three crystals, $Co^{2+}$ ions occupy sites I, I' and II; $Na^+$ ions are also at site II. The tendency of $Co^{2+}$ exchange slightly increases with increasing contact time as $Na^+$ content and the unit cell constant of the zeolite framework decrease.