• Title/Summary/Keyword: Ion-exchange Equilibrium

Search Result 121, Processing Time 0.021 seconds

Synthesis and Exchange Properties of Sulfonated Poly(phenylene sulfide) with Alkali Metal Ions in Organic Solvents

  • Son, Won Geun;Kim, Sang Heon;Park, Su Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio) phenyl]sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% $SO_3-H_2SO_4$) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations ($Li^+,\;Na^+,\;and\;K^+$) and SPPS ion exchanger in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction ($K_{eq}$) also increased in the order of $Li^+,\;Na^+,\;and\;K^+$. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

Equilibrium Property of Ion Exchange Resin for Silica Removal at Ultralow Concentration (초저이온농도에서 이온교환수지에 의한 실리카제거 평형특성)

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Noh, Byeong-Il
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.907-912
    • /
    • 2007
  • Ion exchange resin was used to remove silica ion at ultralow concentration. The effects of temperature, type of ion exchange resin and single/mixed-resin systems on removal efficiency were estimated. As temperature increased, the slope of concentration profile became stiff, and the equilibrium concentration was higher. In the single resin system, the removal of silica was continued up to 400 min, but the silica concentration was recovered to initial concentration after 400 min due to the effect of dissolved $CO_2$. In the mixed-resin system it took about 600 min to reach equilibrium. Because of faster cation exchange reaction than anion exchange reaction, the effect of $CO_2$ could be removed. Based on the experimental results carried out in the mixed-resin system, the selectivity coefficients of silica ion for each ion exchange resin were calculated at some specific temperatures. The temperature dependency of the selectivity coefficient was expressed by the equation of Kraus-Raridon type.

Development of Column ion Exchange Modeling with Successive Ion Exchange Equilibrium (연속이온교환평형 칼럼 모델 개발)

  • 이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.141-145
    • /
    • 2002
  • Successive ion Exchange Column model was developed with the combination of mass action law and mole balance equation. consuming that ions entering the ion exchange bed pass the resin layer via consecutive ion exchange equilibrium. The application of the model to condensate polishing demineralizer in nuclear power plants indicates that the leakage of $Na^+$ and $Cl^-$ depends upon the degree of resin regeneration and that the ratio of specific ion concentration in Influent to in effluent is subject to the characteristics of resin and solution. The model can account for the local in-equilibrium with the correction of resin concentration and also can be applicable to a competitive ion exchange.

  • PDF

Transport Properties of Charged Mosaic Membrane Based on Non-equilibrium Thermodynamics

  • Song, Myung-Kwan;Yang, Wong-Kang
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.67-70
    • /
    • 2005
  • It is well known as the role of ion exchange membrane with functional group in membrane matrix. Recently, we were reported that the charged mosaic membrane within parallel array of negative and positive charge groups. In this study we are reported the properties for the various transport coefficients of metal and heavy metal ions across charged mosaic membrane based on non-equilibrium thermodynamics is not based on equilibrium state.

Characteristics of Selectivity in Anion Exchanges (음이온 선택도 특성)

  • 이석중;안현경;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.194-197
    • /
    • 2002
  • Ion exchange is a chemical reaction between the ions in solution phase and ions in solid phase and is widely used in softening, demineralization, removal and collection of specific ions, and ion migration in the ground water. The ion selectivity depends on the charge and the hydrated radius of ion. The objective of this study was to examine the applicability of anion selectivity obtained from the ion exchange equilibrium OH/sup -/ < F/sup -/ < HCO/sup -/ < Cl/sup -/ < Br/sup -/ ≤ NO₃/sup -/ < SO₄/sup 2-/ to the column ion exchange. The column ion exchange was facilitated in the lower charge of counter-ion in the background electrolyte.

  • PDF

Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins

  • Won, Yong Sun;You, Hae-na;Lee, Min-Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.498-503
    • /
    • 2016
  • The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with $K^+$. A comparison to $Na^+$ and $H^+$ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the $K^+$ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.

Treatment of $NH_3-N$ in Drinking Water Using Ion Exchange (이온교환을 이용한 음용수의 $NH_3-N$ 처리)

  • Chae, Yong-Gon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • Ion exchange performance to remove Ammonium in water was studied using commercially available strong acidic cationic exchange resin of $Na^+$ type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium concentrations for batch reactor as a function of time until resins were exhausted or reached ionic equilibrium between resin and solution. The results shoed that cationic exchange resin used in this study was more effective than activated carbon or zeolite for ammonium removal. Ammonium removal with the ion exchange resin temperature to be high qualitative recording minuteness but increases about seasonal change of temperature was judged with the public law where the adaptability is excellent. When the pH comes to be high at 11 degree, the ammonium was not effectively removed.

Preparation of Quaternary Ammonium Salt Derivatives Supported on Silica gel and Its Ion Exchange Characteristics (실리카겔에 담지된 4급암모늄염 유도체의 합성 및 이온교환 특성)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The ion exchangers supported on silica gel containing primary, secondary, or tertiary amine groups show a behaviour that is weakly acidic, while the quaternary salts are strongly acidic. These properties change according to the hydrophilicities of the modifier functional groups. Ammonium salt derivatives supported on silica gel were prepared from silica modified with 3-Aminopropyltriethoxysiliane and N-3-(Trimethoxysilyl)propylehtylene diamine. The preparation and the ion exchange properties of two systems were discussed. Two systems have different hydrophilicities and contain ammonium chloride derivatives of 3-amminopropyltriethoxysilane and N-3-(triehtoxysilyl)propyl ethylene diamine supported on silica gel, $SA^+/Cl^-$ and $SA^+/Cl^-$, respectively. The high affinity to perchlorate ion presented by the $SA^+/Cl^-$ through the equilibrium studies of ion exchange led us to its application as an ion selective electrode for the perchlorate ion. The determination of the perchlorate ion in the presence of other anions and in complexes is very difficult. Few analytical methods are available and most of them are indirect. Both materials showed potential use as an ion exchanger; they are thermically stable, achieve equilibrium rapidly in the presence of suitable exchanger ions, and are easily recovered.

Ion Exchange Modeling with Mass Action Law and Surface Complexation Models (질량작용법칙과 표면착화모델을 이용한 이온교환 모델링)

  • 안현경;김상대;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.296-300
    • /
    • 2003
  • A large equilibrium and kinetic data set for multi-component cation exchanges was obtained and tested with mass action law and surface complexation model. The systematic batch equilibrium and column experiments of cation adsorption were conducted for binary, ternary, quaternary, and quinary cation exchanges involving $ H^{+}, Li^ {+}, Na^{+}, NH$_4$^{+}, Mg^{2+} $ on a strongly acidic cation exchange resin IRN 77. The mass action law and surface complexation model were tested against both data set to investigate the consistency of ion selectivity and their predictability for competitive cation exchanges. Surface complexation model provided more accurate predictions for both equilibrium and kinetic experimental data than mass action model.

  • PDF

Characteristics of Cation Selectivity for Equilibrium and Column Cation Exchanges (평형 및 칼럼교환에서 양이온 선택도 특성)

  • 이석중;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.156-159
    • /
    • 2002
  • Ion exchange is the most reliable process to remove the ionic impurities and the economic operation. ion exchange is widely used in water and wastewater treatment, especially softening and demineralization. ion selectivity depends on the hydrated radius, charge of ions and concentration. The objective of this study was to determine the selectivity order of cations with equilibrium and column ion exchanges and to investigate the effect of the background anion on selectivity. Cation selectivity increases with decreasing concentration and increasing charge ( $H^+$ < $K^+$ << $Cu^{2+}$ < $Co^{2+}$ < TEX>$Ca^{2+}$ << $Ce^{3+}$)in equilibrium and column cation adsorptions.

  • PDF