• Title/Summary/Keyword: Ion-doping

Search Result 334, Processing Time 0.032 seconds

Recent Advance in Microbial Fuel Cell based on Composite Membranes (복합막 기반의 미생물 연료전지 연구에 대한 총설)

  • Kim, Se Min;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • Microbial fuel cell (MFC) is a bio-electrochemical device that generates electricity by utilizing bacterial catalytic activity that degrades wastewater. Proton exchange membrane (PEM) is the core component of MFC that decides its performance, and Nafion membrane is the most widely used PEM. In spite of the excellent performance of Nafion, it has drawbacks such as high cost, biofouling issue, and non-biodegradable property. Recent studies in MFC attempted to synthetize the alternative membrane for Nafion by incorporating various polymers, sulfonating, fluorinating, and doping other chemicals. This review summarizes characteristics and performances of different composite membrane based MFCs, mostly focusing on PEM.

Structural, Morphological, and Optical Properties of LaNbO4:RE3+ (RE = Dy, Dy/Sm, Sm) Phosphors (LaNbO4:RE3+ (RE = Dy, Dy/Sm, Sm) 형광체의 구조, 표면, 광학 특성)

  • Lee, Jinhong;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.271-276
    • /
    • 2018
  • The effects of activator ion on the structural, morphological, and optical properties of $LaNbO_4:RE^{3+}$ (RE = Dy, Dy/Sm, Sm) phosphors were investigated. X-ray diffraction patterns exhibited that all the phosphors showed a monoclinic system with a main (112) diffraction peak, irrespective of the concentration and type of activator ions. The grain size showed a slightly decreasing tendency as the concentration of $Sm^{3+}$ ions increased. The excitation spectra of the $LaNbO_4:Dy^{3+}$, $Sm^{3+}$ phosphor powders consisted of a strong charge transfer band centered at 259 nm in the range of 220-290 nm and five weak peaks. The emission spectra of the $La_{0.95}NbO_4$:5 mol% $Dy^{3+}$ phosphors exhibited two intense yellow and blue bands centered at 575 nm and 479 nm respectively, which resulted from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ and $^4F_{9/2}{\rightarrow}^6H_{15/2}$ transitions of $Dy^{3+}$. As the concentration of $Sm^{3+}$ was increased, the intensity of the yellow emission band was gradually decreased, while those of orange and red emission bands centered at 604 and 646 nm began to appear and reached maxima at 5 mol%, and then decreased rapidly with further increases in the $Sm^{3+}$ concentration. These results indicated that white light emission could be realized by controlling the concentrations of the $Dy^{3+}$ and $Sm^{3+}$ ions incorporated into the $LaNbO_4$ host crystal.

Research on Afterglow Brightness of Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz by Solid State Synthesis (고상법으로 합성한 Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz계 축광성 형광체 장잔광의 연구)

  • Kim, Seung-woo;Kim, Jung-sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Long-lasting brightness $Sr_{4}Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^{+}$ phosphor was synthesized by modified solid state reaction and its photoluminescence was investigated. $Sr(NO_3)_{2}$ and $Al(NO_3)_3{\cdot}9H_{2}O$ as starting materials, and $B_{2}O_{3}$ as a flux were mixed with $Eu_{2}O_{3}$ as an activator, $Dy_{2}O_{3}$ as a coactivator, and $AgNO_{3}$ as a charge compensator. The crystalline of target powder showed a single-phase $Sr_{4}Al_{14}O_{25}$ by the XRD characterization and the average particle size was about 20-30 ${\mu}m$ from the FE-SEM observation. $Ag^{+}$ ion doping effects (0-0.06 mol) on $Sr_{4}Al_{14}O_{25}:Eu^{2+},\;Dy^{3+},\;Ag^{+}$ phosphor were measured by photoluminescence spectrometer and luminescence meter. The of photoluminescence intensity of the $Sr_{3.64}Al_{14}O_{25}:Eu_{0.11},\;Dy_{0.22},\;Ag_{0.03}$ phosphor was higher than other compositions and afterglow brightness was 0.186 $cd/m^{2}$.

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.

A Fundamental Study of Eu2+ Luminescence in Aluminum Borate Compounds (Aluminum Borate 화합물에 있어서 EU2+이온의 발광성)

  • Chang, Ki-Seog
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.350-355
    • /
    • 2000
  • The compounds, CaAl$_2$(BO$_3$)$_2$O, SrAl$_2$(BO$_3$)$_2$O and BaAl$_2$(BO$_3$)$_2$O, are good host lattices for highly efficient $Eu^{2+}$ luminescence. The europium emission peaks at 450 nm in $Eu^{2+}$:CaAl$_2$(B0$_3$)$_2$O, 411 nm in $Eu^{2+}$: SrAl$_2$(BO$_3$)$_2$O and 375 nm in $Eu^{2+}$: BaAl$_2$(BO$_3$)$_2$O. The $Eu^{2+}$: CaAl$_2$(BO$_3$)$_2$O Phosphor shows a high output and should be a good maintenance in VUV Xe lamps. It is ideally suited for use in PDP phosphors. The $Eu^{2+}$ ion is interesting because the Stokes shift emission is a strong host dependent. The difference in the Stokes shift is oneimportant factor leadingto a difference in wavelength. If the 5d level of $Eu^{2+}$ ion is lower in energy,according to a decrease in the doping lattice size, then the emission wavelength will be longer and the Stokes shift will be smaller. Therefore, a knowledge of the relationship between the crystal lattice size and the Stokes shift. (orthe energy of the 5d level),is essential for beingable to predict $Eu^{2+}$ emission properties.

  • PDF

Relationship between Particle Density and Electrochemical Properties of Spherical LiMn2-xMxO4 (M = Al, Mg, B) Spinel Cathode Materials (구형 스피넬계 LiMxMn2-xO4 (M = Al, Mg, B) 양극소재의 입자치밀도와 전지성능간의 상관관계에 대한 연구)

  • Kim, Kyoung-Hee;Jung, Tae-Gyu;Song, Jun-Ho;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Spherical lithium manganese oxide spinel, $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) prepared by wet-milling, spray-drying, and sintering process has been investigated as a cathode material for lithium ion batteries. As-prepared powders exhibit various surface morphologies and internal density in terms of boron (B) doping level. It is found that the dopant B drives the growth of the primary particle and minimizes the surface area of the powder. As a result, the dopant enhances the internal density of the particles. Electrochemical tests demonstrated that the capacity of the synthesized material at 5 C could be maintained up to 90% of that at 0.2 C. The cycle performance of the material showed that the initial capacity was retained up to 80% even after 500 cycles under the high temperature of $60^{\circ}C$.

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

The electrical characteristics of flexible organic field effect transistors with flexible multi-stacked hybrid encapsulation

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung;Lee, Deok-Gyu;Kim, Yun-Je;An, Cheol-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.176-176
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio (Ion/Ioff), leakage current, threshold voltage, and hysteresis under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stability of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers was investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic-layer-deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to 105 times with 5mm bending radius. In the most of the devices after 105 times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the Ion/Ioff and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

Electrochemical Properties of Boron-doped Cathode Materials (LiNi0.90Co0.05Ti0.05O2) for Lithium-ion Batteries (붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성)

  • Kim, Geun Joong;Park, Hyun Woo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.832-840
    • /
    • 2019
  • To improve the electrochemical performances of the cathode materials, boron-doped $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$ were synthesized by using concentration gradient precursor. The characteristics of the prepared cathode materials were analyzed by XRD, SEM, EDS, PSA, ICP-OES and electrical conductivity measurement. The electrochemical performances were investigated by initial charge/discharge capacity, cycle stability, C-rate, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode material with 0.5 mol% boron exhibited a capacity of 187 mAh/g (0.5 C) in a voltage range of 2.7~4.3 V(vs. $Li/Li^+$), and an capacity retention of 94.7% after 50 cycles. In the relatively high voltage range of 2.7~4.5 V(vs. $Li/Li^+$), it showed a high capacity of 200 mAh/g and capacity retention of 80.5% after 50 cycles.