• Title/Summary/Keyword: Ion-beam treatment

Search Result 171, Processing Time 0.029 seconds

Development of Surface Cleaning Techniques for Analysis of Electronics Structure in CuInSe2, CuGaSe2 Solar Cell Absorber Layer (태양전지용CuInSe2와 CuGaSe2 흡수층의 전자구조해석을 위한 표면 청정기술 개발)

  • Kim, Kyung-Hwan;Choi, Hyung-Wook;Kong, Sok-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.125-129
    • /
    • 2005
  • Two kinds of physical treatments were examined for the analysis both of intrinsic surface and interior nature of CuInS $e_2$[CIS] and CuGaS $e_2$[CGS] films grown in separated systems. For the first method, a selenium protection layer which was immediately deposited after the growth of the CIS was investigated. The Se cap layer protects CISe surface from oxidation and contamination during the transport under ambient atmosphere. The Se cap was removed by thermal annealing at temperature above 15$0^{\circ}C$. After the decapping treatment at 2$25^{\circ}C$ for 60 min, ultraviolet photoemission and inverse photoemission measurements of the CIS film showed that its valence band maximum(VBM) and conduction band minimum (CBM) are located at 0.58 eV below and 0.52 eV above the Fermi level $E_{F}$, respectively. For the second treatment, an Ar ion beam etching was exploited. The etching with ion kinetic energy $E_{k}$ above 500 eV resulted in broadening of photoemission spectra of core signals and occasional development of metallic feature around $E_{F}$. These degradations were successfully suppressed by decreasing $E_{k}$ below 400 eV. CGS films etched with the beam of $E_{k}$ = 400 eV showed a band gap of 1.7 eV where $E_{F}$ was almost centered.st centered.

Improve The Contrast Ratio on 20.1' S-IPS TFT-LCD with Ion-Beam-Alignment Technology

  • Chen, Yu-Hsien;Liu, Shen-Fa;Li, Huai-An;Huang, I-Chen;Sun, Oliver;Jaw, Jyh-Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1605-1608
    • /
    • 2006
  • The contrast ratio, brightness, and uniformity of S-IPS panel, whose alignment process was employed by ion-beam-alignment (IBA) technology, were improved significantly compared with the convention rubbing's panel, because the light leakage has been reduced in dark state effectively. The IBA technology could generate a panel whose pretilt angle was stable and low after post-treatment process.

  • PDF

The Enhancement of Corrosion Resistance for WC-Co by Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Kim, Dong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.101-101
    • /
    • 2010
  • A strong adhesion of a silicon carbide (SiC) coating on a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In the case of 1 M NaOH solution, a corrosion current density for a SiC coated WC-Co with a heat treatment at $500^{\circ}C$ displays about 50 times lower than that for the as-received WC-Co. However, in the case of 0.5 M H2SO4 solution, a corrosion current density for a SiC coated WC-Co displays about 3 times lower than that for as-received WC-Co. We discussed the physical reasons for the changes of the corrosion current densities at the different electrolytes.

  • PDF

Poling-dependent Ferroelectric Properties of SBN30 Thin Films (분극에 의한 SBN30 박막의 강유전특성 변화)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, He-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.309-312
    • /
    • 2002
  • Ferroelectric $Sr_{0.3}Ba_{0.7}Nb_{2}O_{6}$ (SBN30) thin films were deposited on Pt/Ti/$SiO_{2}$/Si(100) substrates by ion beam sputtering. During annealing treatment at $750^{\circ}C$, poling was attempted by applying dc voltage bias across polished surfaces. Phase relation, microstructure and crystallization behavior were examined using XRD and FE-SEM. Ferroelectric hysteresis characteristics were also determined where both remanent polarization and coercive values decreased with the increase of bias voltage. The measured remanent polarization and coercive field values at 5 V and 10 V bias were $36{\mu}C/cm^2$, $10{\mu}C/cm^2$ and 100kV /cm, 80kV /cm, respectively.

  • PDF

Room Temperature Deposition and Heat Treatment Behavior of ATO Thin Films by Ion Beam Sputtering (이온빔 스퍼터링에 의한 ATO 박막의 실온 증착 및 열처리에 따른 특성변화)

  • 구창영;김경중;김광호;이희영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1025-1032
    • /
    • 2000
  • 산화분위기에서의 반응성 이온빔 스퍼터링법으로 Sn과 Sb 금속 타겟을 사용하여 실온에서 ATO 박막을 증착하였다. Sb 첨가량, 박막의 두께 및 열처리가 ATO 박막의 전기적 특성과 광학적 특성에 미치는 효과를 연구하고자 하였다. 제조된 ATO 박막의 두께는 약 1500$\AA$과 1000$\AA$으로 조절하였으며, Sb 농도는 10.8wt% 또는 14.9wt%임이 XPS 분석에 의하여 확인되었다. 증착한 박막의 열처리는 40$0^{\circ}C$~$600^{\circ}C$의 온도범위에서 산소 또는 forming gas(10% H$_2$-90% Ar) 분위기에서 30분간 수행하였다. 이렇게 제조된 ATO 박막은 Sb의 첨가량, 두께 및 열처리 조건에 따라 다양한 전기 비저항 값과 가시광선 대역에서의 광투과도를 나타내었다.

  • PDF

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF

Effect of the Droplets on the Wear Characteristics of Steel for the Cold Working Roller (Droplet가 냉연 롤러용 강의 마모 특성에 미치는 영향)

  • 문봉호
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.145-151
    • /
    • 2004
  • A modified surface layer by ion implantation is very thin (under 1 $\mu\textrm{m}$) but has superior mechanical characteristics. therefore ion implantation has been used successfully as a surface treatment technology to improve the wear, fatigue, and corrosion resistances of materials. MEVVA which is a kind of ion beam apparatus has merits of low cost and is usable to various metals, but occurs a droplet ranging from micron to tens of micron on the implanted surface at ion implantations. wear is a dynamic phenomenon on interacting surfaces with rotative motion. Since wear changes in condition of the surface, we should control to surface. In order to improve a wear resistance of Ti ion implanted 1C-3Cr steel(material for roller in the cold working process), it is essential to investigate the effect of the droplets on the wear characteristics. In this study, we investigate the effect of the droplets on the wear characteristics of 1C-3Cr steel using SEM Tribosystem as in-situ system. Results show that the droplet occurred at ion implantation becomes the cause of severe wear. Therefore, the ion-implanted surface should be removed the droplet to improve wear resistance.

The Influence of Surface-modified ITO by Ion Beam Irradation on the Organic EL Performances (이온빔으로 조사된 ITO 전극 표면이 유기 EL 소자성능에 미치는 영향)

  • Oh, Jae-young;Joo, Jin-soo;Lee, Chun-An;Park, Byung-Gook;Kim, Dong-hwan
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.191-194
    • /
    • 2003
  • The influence of on ion beam irradiation to the indium tin oxide (ITO) substrate on the performance of the organic light-emitting diodes (OLEDs) was studied. ITO films were used as the transparent anode of OLEDs with poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) as a hole-injection/transport layer. Oxygen and argon plasma treatment of ITO resulted in a change in the work function and the chemical composition. For plasma treated ITO anodes, the device efficiency clearly correlated with the value of the work function. We also discussed the implications of our experimental study in relation to the modification of the ITO surface composition, transmittance, reflectance, and water contact angle (WCA).

A Study on the Characterization of Ni-C Thin Films Utilizing a Dual-Source Deposition System (듀얼 소스 증착장치를 이용한 Ni-C 박막의 특성에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.5
    • /
    • pp.235-243
    • /
    • 2008
  • Ni-C composite films were prepared using a combination of microwave plasma CVD and ion beam sputtering deposition working in a codeposition way. The structure of these films was characterized by energy-dispersive X-ray diffraction (EDXRD), transmission electron microscopy (TEM) and Raman spectroscopy. It was found that a nickel carbide phase, $Ni_3C$ (hcp), formed as very fine crystallites over a wide temperature range when Ni-C films were deposited at low $CH_4$ flow rates. The thermal stability of this nonequilibrium carbide $Ni_3C$ was also studied. As a result, the $Ni_3C$ carbide was found to decompose into nickel and graphite at around $400^{\circ}C$. With high $CH_4$ flow rates (> 0.2 sccm), the structure of the Ni-C films became amorphous. The formation behavior of the carbide and amorphous Ni-C phases are discussed in relation to the electrical resistivity of the films.