• 제목/요약/키워드: Ion-Migration

검색결과 191건 처리시간 0.023초

Sn-3.0Ag-0.5Cu 솔더링에서 플럭스 잔사가 전기화학적 마이그레이션에 미치는 영향 (Flux residue effect on the electrochemical migration of Sn-3.0Ag-0.5Cu)

  • 방정환;이창우
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.95-98
    • /
    • 2011
  • Recently, there is a growing tendency that fine-pitch electronic devices are increased due to higher density and very large scale integration. Finer pitch printed circuit board(PCB) is to be decrease insulation resistance between circuit patterns and electrical components, which will induce to electrical short in electronic circuit by electrochemical migration when it exposes to long term in high temperature and high humidity. In this research, the effect of soldering flux acting as an electrical carrier between conductors on electrochemical migration was investigated. The PCB pad was coated with OSP finish. Sn3.0Ag0.5Cu solder paste was printed on the PCB circuit and then the coupon was treated by reflow process. Thereby, specimen for ion migration test was fabricated. Electrochemical migration test was conducted under the condition of DC 48 V, $85^{\circ}C$, and 85 % relative humidity. Their life time could be increased about 22% by means of removal of flux. The fundamentals and mechanism of electrochemical migration was discussed depending on the existence of flux residues after reflow process.

Effect of measurement method and cracking on chloride transport in concrete

  • Zhang, Shiping;Dong, Xiang;Jiang, Jinyang
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.305-316
    • /
    • 2013
  • This paper aims to study the effect of measurement methods and cracking on chloride transport of concrete materials. Three kinds of measurement methods were carried out, including immersion test, rapid migration test and steady-state migration test. All of these measurements of chloride transport show that chloride ion diffusion coefficient decreased with the reduction of water to cement ratio. Results of the immersion test were less than that of rapid migration test and steady-state migration test. For the specimen of lower water to cement ratio, the external electrical field has little effect on chloride binding relatively. Compared with the results obtained by these different measurement methods, the lower water to cement ratio may cause smaller differences among these different methods. The external voltage can reduce chloride binding of concrete, and the higher electrical field made a strong impact on the chloride binding. Considering the effect of high voltage on the specimen, results indicate that results based on the steady-state migration test should be more reasonable. For cracked concrete, cracking can accelerate the chloride ion diffusion.

유기 금속 할라이드 페로브스카이트에서 이온 이동 (Ion Migration in Organic Metal Halide Perovskites)

  • 오일환
    • 전기화학회지
    • /
    • 제21권2호
    • /
    • pp.21-27
    • /
    • 2018
  • 본 총설에서는 최근 전세계적으로 각광 받고 있는 유기 금속 할라이드 페로브스카이트 소재에서 일어나는 이온 이동 현상에 대한 최신 연구에 대해 정리하였다. 페로브스카이트 물질 조성, 인가전압에 따라 다른 결과들이 보고되었지만, 실제 태양전지 작동 조건에서 iodide 가 이동하는 것으로 보이며, 때로는 methylammonium의 이동도 관찰된다. 페로브스카이트는 상온에서 전자와 이온이 동시에 이동하는 이른바 mixed conductor이고, 이는 페로브스카이트 태양전지 전류-전압곡선의 hysteresis, 장시간 작동에 따른 성능 저하 등에 지대한 영향을 미친다.

물-시멘트비 및 시멘트 종류가 해양콘크리트의 내염해성에 미치는 영향 (Effect of W/C and the Kinds of Cement on the Chloride Invasion Resistance of the Offshore Concrete)

  • 신홍철;유재강;박상준;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.165-168
    • /
    • 2005
  • This paper investigated the effect of W/C and the kinds of cement on the chloride invasion resistance of the offshore concrete. W/C set up 0.30, 0.35, 0.40 and The kinds of cement were used four(ordinary portland cement, ground granulated blast-furnace slag cement, belite cement, low heat portland cement). For the electrical migration test, NT BUILD 492's method was used to estimate the migration coefficient of chloride ion. As a result, the migration coefficients of chloride ion of concrete according to w/c were shown reducing with the w/c increasing, and according to kinds of cement were shown discrepancy in chloride invasion resistance. Especially blast-furnace slag cement was most low it. In the each cement, the compressive strength was shown related to the migration coefficient.

  • PDF

이중 결정립 구조 1%Si-Al 금속선에 의한 Migration 수명의 개선 (Improvement of Migration Lifetime by Dual-sized Grain Structure in 1% Si-Al Metal Line)

  • 김영철;김철주
    • 전자공학회논문지A
    • /
    • 제30A권6호
    • /
    • pp.1-7
    • /
    • 1993
  • After the 1%S-Al metal is deposited, a thin oxide is formed thereon. Then, a single charged Argon(Ar$^{+}$) is ion implanted into the oxide layer, thereby causing the metal grain in the upper surface of the metal layer to become amorphous. Consequently, the grain size will be reduced and the rough surface of the metal layer flattened. However, the remainder of the metal layer beneath the upper surface thereof will still exhibit large grain size and low resistance, because the Argon ion is only implanted to characterized by a dual-sized grain structure which served to reduce interlayer stress, thereby decreasing the rate of stress migration, and to lower the resistivity of the metal line, thereby enhancing the electromigration characteristic thereof. Experiments have shown that the metal line exhibits a metal migration rate which is approximately 700% less than the control group and a standard deviation which is approximately 200% less than these group.p.

  • PDF

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

도시고형폐기물 소각비산재의 Electrokinetic 정화

  • 조용실;한상재;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.224-227
    • /
    • 2001
  • In general, municipal solid waste incinerator fly ash (MSWIF) has a potential hazardous leaching of heavy metal with subsurface environment variation. Therefore, to remove the heavy metal from MSWIF electrokinetic technology were used. With constant current density condition heavy metals in MSWIF removed by ion migration. During 7 days operation 40~80% of Cr, Cd and As were removed and longer operation, 14 days treatment, showed 35~100% removal efficiency.

  • PDF

전기 영동법에 기초한 콘크리트의 급속 염소이온 확산 특성 평가 (Rapid Chloride Penetration Test for Concrete Based on the Electrochemical Method)

  • 오상균;박동천
    • 한국항해항만학회지
    • /
    • 제34권10호
    • /
    • pp.787-792
    • /
    • 2010
  • 콘크리트는 물시멘트비에 상응하는 공극을 가지게 되며, 공극을 통한 염소이온의 확산을 평가하기 위하여 해안가 폭로 및 해수 침지실험이 널리 사용된다. 이상의 실험은 경우에 따라서 다년간의 시간을 요하는 경우도 있어, 최근에는 전기 영동법에 기초한 급속 염소이온 확산시험을 실시하는 경우가 많으나, 그 값이 폭로 및 침지 시험에서 얻은 값과 상이한 경우가 많아 데이터의 실용성을 높이기 위하여 그 원인 규명이 절실한 실정이다. 본 연구에서는 평가 방법으로써 Nernst-Einstein의 식을 통한 염화물 이온 이동계수의 산정방법을 사용하였으며, NT BUILD 492법 및 해수 침지실험을 통한 확산 특성과 비교하여 값의 차이에 대하여 고찰하였다. 그 결과 실험인자의 변화가 염소이온 확산에 미치는 영향은 미비한 것으로 평가되어져 실험조건에서 발생하는 영향은 거의 없는 것으로 규명되었으며, NT BUILD 492법과도 거의 동일한 값이 구해졌다. 침지실험 결과와의 상이는 염소이온 확산에서 경계조건의 차이 및 염소이온의 시멘트 수화물과의 고정화에 의한 것으로 판단되어진다.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.