• Title/Summary/Keyword: Ion-Migration

Search Result 191, Processing Time 0.015 seconds

Structural and Magnetic Properties of (Mn, Cr)xCo1-xFe2O4 Thin Films Prepared by Sol-gel Method (졸-겔 방법을 이용하여 제작된 (Mn, Cr)xCo1-xFe2O4 박막의 구조적, 자기적 특성)

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • By substituting Mn or Cr for Co in inverse spinel $CoFe_2O_4,\;Mn_xCo_{1-x}Fe_2O_4\;and\;Cr_xCo_{1-x}Fe_2O_4$ and thin films were prepared by sol-gel method and their structural and magnetic properties were investigated. X-ray diffraction indicates that the cubic lattice constant increase for the Mn substitution while it hardly changes for the Cr substitution. Substitution of $Mn^{2+}$ for octahedral $Co^{2+}$ sites can explain the increase of lattice constant in $Mn_xCo_{1-x}Fe_2O_4$. On the other hand, Substitution of $Cr^{3+}$ for octahedral $Co^{2+}$ and subsequent reduction of $Fe^{3+}$ ion into $Fe^{2+}$ are expected to happen. Mossbauer spectroscopy measurements on $Cr_xCo_{1-x}Fe_2P_4$ indicate the existence of tetrahedral $Fe^{2+}$ ions that are created through reduction of tetrahedral $Fe^{3+}$ ions in order to compensate charge imbalance happened by $Cr^{3+}$ substitution for octahedral $Co^{2+}$ sites. On the other hand, no $Fe^{2+}$ ions were detected by Mossbauer spectroscopy for $Mn_xCo_{1-x}Fe_2O_4$. A migration of $Fe^{3+}$ ions from octahedral to tetrahedral sites In $Mn_xCo_{1-x}Fe_2O_4$ was detected by Mossbauer spectroscopy for x>0.47. Vibrating sample magnetometry measurements on the samples at room temperature revealed that the saturation magnetization increases by Mn and Cr substitution for certain range of x, qualitatively explainable in terms of the comparison of spin magnetic moment among the related transition-metal ions.