• Title/Summary/Keyword: Ion-Exchange Resin

Search Result 368, Processing Time 0.03 seconds

Preparation of Cation-exchange Resin from Lignin

  • Kamelt S.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.78-84
    • /
    • 2004
  • Lignin precipitated from black liquor of soda pulping of bagasse was used to prepare cation-exchange resin. The effect of sulfuric acid treatment, concentration of phenol and formaldehyde on the properties of the prepared cation-exchange resin was investigated. It was found that sulfonated resinified phenolated lignin gave a resin with an ion-exchange capacity higher than that of resin, which resulted from sulfonation of resinified lignin at zero phenol concentration. Infrared spectroscopy of the prepared ion-exchange resin shows anew bands at 1060, 1160, 1280 and $1330\;cm^{-1}$ which indicated to the presence of $SO_{3}$.

Basic Study for Development of Denitrogenation Process by Ion Exchange(V) -Synthesis of Nitrate-Selective Ion Exchange Resines- (이온교환법에 의한 탈질소 공정개발의 기초연구(V) -질산성 질소 선택적인 이온교환수지의 합성-)

  • 이동환;김승일;전진희;박찬영;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • Nitrate-selective ion exchange resin which have bulky tertiary amine as functional group have been synthesized by the reaction of chloromethylated polystyrene-divinylbenzene copolymer and the corresponding tertiary amine [$NR_3=NE_{t3} 1, N{(C_2 H_4 H_3)}_32]$in ethanol, while commercial resin has $NMe_3$ as functional group. The fundamental properties such as bulk density, water content, appearance index, exchange capacity, effective size, uniformity coefficient of synthesized anion exchange resin (1) have been measured. The ion exchange resin (1) and (2) exhibited the better selectivity for nitrate than sulfate in both batch and continuous column experiments.

  • PDF

Synthesis of Ion Exchange Resin - I. Synthesis of Phenolsulfonic Acid Resins (Ion exchange Resin 의 合成에 關한 硏究. p-Phenolsulfonic acid resin 의 합성 (第1報))

  • Oh Joon Suk;Choi Qui Won
    • Journal of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 1954
  • The cation exchange resins are synthesized from p-phenolsulfonic acid, formalin, and sodium hydroxide catalyser, and the ion exchange properties of them are studied with respect to their reactant ratios. Maximum exchange capacity was 2.06 me/G, much smaller than the theoretical value of 3.42 me/G to be expected for that of the structure: Under the present experimental conditions, much -SO3H radical should have been split away.

  • PDF

Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin (오염된 물로부터 이온교환수지를 이용한 방사성이온 제거)

  • Shin, Do Hyoung;Ju, Ko Woon;Cheong, Seong Ihl;Rhim, Ji Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.633-638
    • /
    • 2016
  • In this study, we used three kinds of commercially available cation, anion, and mixed-ion exchange resins to separate radioactive ions from a polluted water containing Cs, I, and other radioactive ions. The experiment was conducted at a room temperature with a batch method, and a comparative analysis on the decontamination ability of each resin for the removal of Cs and I was performed by using different quantities of resins. The concentration was analyzed using ion chromatography and the ion exchange resin product from company D showed an overall high ion exchange ability. However, for most of the experiments when the amount of ion exchange resin was decreased, the decontamination ability of the resins against mass increased. When the mass of company D's cation exchange resin was small, the ion exchange ability against Cs and I ions were measured as 0.199 and 0.344 meq/g, respectively. When the mixed ion exchange resin was used, the ion exchange ability against I ions was measured as 0.33 meq/g. All in all, company D's ion exchange resins exhibited a relatively higher ion exchange ability particularly against I ions than that of other companies' exchange ions.

A Study on Characteristics of Pulverized Ion Exchange Resins (이온교환수지 분체 특성에 대한 연구)

  • Jaeyong Huh;Gyeongmi Goo;Yongwon Jang;Sanghyeon Kang
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.132-139
    • /
    • 2024
  • The ion exchange resin used to remove total dissolved solids (TDS) is used by being packed in a column, and sufficient contact time between the ionic material and the ion exchange resin is required during the ion exchange process. In this study, the ion exchange resin that exhibits high TDS reduction even with a short contact time through pulverization of the ion exchange resin was characterized. The optimal size of resin considering flowability was over 100 ㎛. The highest pulverizing yield were obtained that 250~500 ㎛ size and 100~250 ㎛ size were 67.3% and 36.9%, respectively. Also, the highest yield and the pulverizing time of 100~500 ㎛ size was 87.1% and 2 minutes, respectively. Under batch test conditions, the time to reach a removal rate of 95% and 99% for 250~500 ㎛ resins was 1.82 and 1.96 times faster than non-pulverized ion exchange resin, respectively. The 100~250 ㎛ resins showed 15.9 times and 6.18 times faster, respectively. Under the column test, a total of 1.74 g of NaCl was removed by non-pulverized ion exchange resins, 1.83 g of NaCl was removed by 250~500 ㎛ resins and 1.63 g of NaCl was removed by 100 and 250 ㎛ resins. As the size of the resin decreased, the capacity slightly decreased. As a result, it was observed that the pulverized ion exchange resins could be a method of achieving high TDS removal performance under short contact time.

Synthesis of High Loading PONF-g-GMA Anion Exchange Fiber Containing Ion Exchange Resin and Their Adsorption Properties of Vanadium (이온교환 수지를 함유한 PONF-g-GMA High Loading 음이온교환 섬유의 합성 및 바나듐 흡착 특성)

  • Baek, Ki-Wan;Park, Seung-Wook;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.315-321
    • /
    • 2007
  • Aminated PONF-9-GMA ion exchange fabrics were synthesized by radiation induced graft copolymerization. Hybrid ion exchange fabrics combined with aminated PONF-g-GMA fabrics and anionic ion exchange resin were also fabricated by hot melt adhesion method and then their adsorption properties were investigated. Ion exchange capacity of the hybrid ion exchange fabrics was higher than ion exchange fabric and was lower than bead resin. The maximum value was 4.18 meq/g. Adsorption breakthrough time for vanadium of the hybrid ion exchange fabric was 550 min, which was faster than bead resin but slower than fibrous ion exchanger. The Breakthrough time of the hybrid ion exchange fabrics gets longer with increasing pH. The initial breakthrough time occurred around 400 min with increasing vanadium concentration.

Treatment of $NH_3-N$ in Drinking Water Using Ion Exchange (이온교환을 이용한 음용수의 $NH_3-N$ 처리)

  • Chae, Yong-Gon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • Ion exchange performance to remove Ammonium in water was studied using commercially available strong acidic cationic exchange resin of $Na^+$ type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium concentrations for batch reactor as a function of time until resins were exhausted or reached ionic equilibrium between resin and solution. The results shoed that cationic exchange resin used in this study was more effective than activated carbon or zeolite for ammonium removal. Ammonium removal with the ion exchange resin temperature to be high qualitative recording minuteness but increases about seasonal change of temperature was judged with the public law where the adaptability is excellent. When the pH comes to be high at 11 degree, the ammonium was not effectively removed.

Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins

  • Won, Yong Sun;You, Hae-na;Lee, Min-Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.498-503
    • /
    • 2016
  • The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with $K^+$. A comparison to $Na^+$ and $H^+$ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the $K^+$ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.

Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration

  • Kabsch-Korbutowicz, Malgorzata;Urbanowska, Agnieszka
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.211-219
    • /
    • 2012
  • To enhance the efficiency of water treatment and reduce the extent of membrane fouling, the membrane separation process is frequently preceded by other physico-chemical processes. One of them might be ion exchange. The aim of this work was to compare the efficiency of natural organic matter removal achieved with various anion-exchange resins, and to verify their potential use in water treatment prior to the ultrafiltration process involving a ceramic membrane. The use of ion exchange prior to ceramic membrane ultrafiltration enhanced final water quality. The most effective was MIEX, which removed significant amounts of the VHA, SHA and CHA fractions. Separation of uncharged fractions was poor with all the resins examined. Water pretreatment involving an ion-exchange resin failed to reduce membrane fouling, which was higher than that observed in unpretreated water. This finding is to be attributed to the uncharged NOM fractions and small resin particles that persisted in the water.

Drug Release Characteristics of Famotidine-Cationic Exchange Resin Complexes and Their Pharmacokinetics in Rats (파모티딘-양이온 교환수지 복합체의 약물방출 특성 및 흰쥐에서의 체내동태)

  • Shin, Dong-Sun;Song, Woo-Heon;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.313-321
    • /
    • 1997
  • Ion exchange resin complexes of famotidine have been prepared by the reaction of famotidine solution with activated ion exchange resins. Complex formation efficiency between famotidine and ion exchange resin was about $80{\sim}90%$ in average, calculated by HPLC determination. Drug release characteristics from the resin complexes were evaluated by the modified percolation method. Famotidine release was dependent on the type of ion exchange resins. In the case of weakly acidic resin complexes, the cumulative released amount of famotidine was more than 90% for 1hr in pH 1.2 buffer solution. However, in the case of strongly acidic resin complexes, it was less than 5% for 3hr in the same medium. Strongly acidic resins revealed some advantages over weakly, acidic resins for overcoming instability of famotidine in gastric juice. In addition, strongly acidic resin complexes showed controlled release of famotidine in pH 6.8 buffer solution, showing the result of about 60 to 70% of drug release for 5hr. After oral administrations of famotidine-resin complexes to rats as dose of 40 mg equivalent/kg, the pharmacokinetic parameters of famotidine were obtained by model independent analysis and compared with those of famotidine solution or suspension. $C_{max}$ of famotidine-resin complex was lower than that of famotidine solution or suspension. MRT, MAT, and MDT of the complexes were greater than those of famotidine solution or suspension. From these results, it was expected that famotidine was released slowly from the complexes and absorbed continuously into systemic circulation. It was recognized that drug release from the complexes was the rate-limiting step in drug absorption, since there were close correlations between in vitro drug release and in vivo pharmacokinetic parameters.

  • PDF