• Title/Summary/Keyword: Ion size

Search Result 1,132, Processing Time 0.025 seconds

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2553-2556
    • /
    • 2010
  • On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams (고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성)

  • Park Jong Yong;Choi Hyoung Wook;Ermakov Y.;Jung Yeon Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

Effects on Electrochemical Performances of Conductive Agents with Different Particle Size in Spinel LiMn2O4 Cathode for Li-ion Batteries (리튬이온전지용 스피넬계 LiMn2O4 양극에서 상이한 입자크기를 가진 전도성물질이 전기화학적 성능에 미치는 영향)

  • Lee, Chang-Woo;Lee, Ml-Sook;Kim, Hyun-Soo;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.702-707
    • /
    • 2005
  • Spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conductive agents, and then carried out their comparative investigation for the performances of the $Li/LiMn_2O_4$ cells using different conductive agents with different particle size. In addition, their electrochemical impedance characteristic of $Li/Mn_2O_4$ cells using different conductive agents is effectively identified through a.c. impedance technique. As a consequence, $Li/LiMn_2O_4$ cells with Super P Black show better electrochemical performances ascribed to the significant contribution of feasible ionic conduction due to larger particle size than those with Acetylene Black.

A Novel Large Area Negative Sputter Ion Beam source and Its Application

  • Kim, Steven
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.73-73
    • /
    • 1999
  • A large area negative metal ion beam source is developed. Kinetic ion beam of the incident metal ions yields a whole nucleation and growth phenomena compared to the conventional thin film deposition processes. At the initial deposition step one can engineer the surface and interface by tuning the energy of the incident metal ion beams. Smoothness and shallow implantation can be tailored according to the desired application process. Surface chemistry and nucleation process is also controlled by the energy of the direct metal ion beams. Each individual metal ion beams with specific energy undergoes super-thermodynamic reactions and nucleation. degree of formation of tetrahedral Sp3 carbon films and beta-carbon nitride directly depends on the energy of the ion beams. Grain size and formation of polycrystalline Si, at temperatures lower than 500deg. C is obtained and controlled by the energy of the incident Si-ion beams. The large area metal ion source combines the advantages of those magnetron sputter and SKIONs prior cesium activated metal ion source. The ion beam source produces uniform amorphous diamond films over 6 diameter. The films are now investigated for applications such as field emission display emitter materials, protective coatings for computer hard disk and head, and other protective optical coatings. The performance of the ion beam source and recent applications will be presented.

  • PDF

Reduced ion mass effects and parametric study of electron flat-top distribution formation

  • Hong, Jinhy;Lee, Ensang;Parks, George K.;Min, Kyoungwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.118.2-118.2
    • /
    • 2012
  • In particle-in-cell (PIC) simulation studies related to ion-ion two-stream instability, a reduced ion-to-electron mass ratio is often employed to save computation time. But it was not clearly verified how electrons dynamics are coupled with the slower evolution of ion-ion interactions under the external electric field. We have studied the ion beam driven instability using a 1D electrostatic PIC code by comparing different rescaling of parameter with real ion mass from the reference simulation with reduced ion mass. As the external electric field is stronger, the excited unstable mode range was more sensitively affected by the system size with the real mass ratio than the reduced ion mass. The results show that the reduced mass ratio should be used cautiously in PIC code as the electron dynamics can modify the ion instabilities. Additionally we found the formation of electron flat-top distribution in the final saturation stage. Simulation results show that in the early phase electrostatic solitary waves are quasi-periodically formed, but later they are fully dissipated resulting in heated, flat-top distributions. New electron beam components are occasionally formed. These are a consequence of the interaction with solitary wave structures. We parametrically investigate the development of electron phase space distributions for various drift speeds of ion beams and temperature ratios between ions and electrons

  • PDF

A Study on the Adsorption of Uranium(VI) Ion Using Ion Exchange Resin (이온 교환수지를 이용한 우라늄(VI) 이온의 흡착에 관한 연구)

  • 강영식;김준태
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.114-122
    • /
    • 2000
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzine with 1%, 2%, 5% and 105-crosslink and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of uranium ion by this resins were studied. The resins were very stable in both acidic and basic media and have good resistance to heat at $300^{\circ}C$. The uranium ion are not adsorbed on the resins below pH 3.0, but the power of adsorption of it increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of uranium ion was two hours and adsorptive power decreased in proportion to crosslink size of the resins and order of dielectric constants of solvents used and the adsorption for uranium ion was bin the order of $OdienNtn-H_4$ > $OtnNen-H_4$ > $OtnNen-H_4$ > $OenNen-H_4$.

  • PDF

Mass Concentration and Ion Composition of Size-segregated Particulate Matter during the Non-Asian Dust Storm of Spring 2007 in Iksan (익산지역에서 봄철 비황사기간 중 입경별 대기먼지농도와 이온조성)

  • Kang, Gong-Unn;Kim, Nam-Song;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.300-310
    • /
    • 2008
  • In order to further determine the mass concentration and ion composition of size-segregated particulate matter (PM) during the non-Asian dust storm of spring, $PM_{2.5}$ (fine particle), $PM_{10-2.5}$ (coarse particle), and $PM_{over-10}$ (PM with an aerodynamic diameter larger than $10{\mu}m$) were collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in the spring season of 2007 in the Iksan area. During the sampling period from 5 April to 21 April, a total of 34 samples for size-segregated PM were collected, and then measured for PM mass concentrations by gravimetric measurements and for water-soluble inorganic ion species by using ion chromatography. Average mass concentrations of $PM_{2.5}$, $PM_{10-2.5}$, $PM_{over-10}$ were $35.4{\pm}11.5{\mu}g/m^3$, $13.3{\pm}5.5{\mu}g/m^3$ and $9.5{\pm}4.7{\mu}g/m^3$, respectively. On average, $PM_{2.5}$ accounted for 74% of $PM_{10}$. Compared with the literature from other areas in Korea, the measured concentration of $PM_{2.5}$ were relatively high. Water-soluble inorganic ion fractions in $PM_{2.5}$, $PM_{10-2.5}$, and $PM_{over-10}$ were found to be 47.8%, 28.5%, and 14.7%, respectively. Among the water-soluble inorganic ion species, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the main components in $PM_{2.5}$, while $NO_3^-$ dominantly existed in both $PM_{10-2.5}$ and $PM_{over-10}$. Non-seasalt $SO_4^{2-}$ (nss-$SO_4^{2-}$ and $NO_3^-$ were found to mainly exist as the neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ in fine particles.

Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City between 2006 and 2007 (2006~2007년 천안시 대기 에어로졸의 입경별 농도 및 이온성분 특성)

  • Lee, Hyung-Bae;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1349-1353
    • /
    • 2008
  • Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City were measured using a high volume air sampler equipped with a 5-stage cascade impactor and a ion chromatography between March 2006 and April 2007. The mean values of 24-hr average concentrations of TSP, PM10, PM2.5, and PM1 were 61.7, 55.2, 43.7, $33.2{\mu}g/m^3$, respectively. Mass size distributions of atmospheric aerosols were bimodal distributions with a saddle point in $1.5\;{\sim}\;3.0{\mu}m$ range in diameter separating coarse and fine particle modes. Fine particles, PM2.5 were 70.8% of the total mass of aerosols. Major ion components in aerosols were ${NH_{4}}^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ for cations, and ${SO_{4}}^{2-}$, ${NO_{3}}^-$, $Cl^-$ for anions. ion components occupied 37.4% of coarse particles and 46.2% of fine particles in mass.

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.