• Title/Summary/Keyword: Ion oxide

Search Result 1,042, Processing Time 0.032 seconds

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Kinetic Studies on the Mechanism of Hydrolysis of Styryldiphenylphosphine Oxide (Styryldiphenylphosphine Oxide의 가수분해 반응 메카니즘에 관한 반응속도론적 연구)

  • Kim, Tae Rin;Shin, Gap Cheol;Pyun, Sang Yong;Lee, Seok Hee
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.429-434
    • /
    • 2000
  • The rate constants for the hydrolysis of styryldiphossphine oxide(SDPO) were deter-mined by ultraviolet visible spectrophotometric method and rate equation which can be applied over wide pH ranges was obtained. On the basis of pH-rate profile, hydrolysis product analysis, general base catalysis and substituent effect, a plausible hydrolysis mechanism is proposed : Below pH 4.5, the hydrolysis reaction is pro-ceeded by the attack of water to carbocation after protonaticentration of hydroxide ion.

  • PDF

The Characteristics of the Oxide Layer Produced on the Plasma Nitrocarburized Compound Layer of SCM435 Steel by Plasma Oxidation (플라즈마 산질화처리된 SCM435강의 표면경화층의 미세조직과 특성)

  • Jeon Eun-Kab;Park Ik-Min;Lee Insup
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.265-269
    • /
    • 2004
  • Plasma nitrocarburising and post oxidation were performed on SCM435 steel by a pulsed plasma ion nitriding system. Plasma oxidation resulted in the formation of a very thin ferritic oxide layer 1-2 $\mu\textrm{m}$ thick on top of a 15~25 $\mu\textrm{m}$ $\varepsilon$-F $e_{2-3}$(N,C) nitrocarburized compound layer. The growth rate of oxide layer increased with the treatment temperature and time. However, the oxide layer was easily spalled from the compound layer either for both oxidation temperatures above $450^{\circ}C$, or for oxidation time more than 2 hrs at oxidation temperature $400^{\circ}C$. It was confirmed that the relative amount of $Fe_2$$O_3$, compared with $e_3$$O_4$, increased rapidly with the oxidation temperature. The amounts of ${\gamma}$'-$Fe_4$(N,C) and $\theta$-$Fe_3$C, generated from dissociation from $\varepsilon$-$Fe_{2-3}$ /(N,C) phase during $O_2$ plasma sputtering, were also increased with the oxidation temperature.e.

Fabrication of Transition Metal doped Sapphire Single Crystal by High Temperature and Pressure Acceleration Method

  • Park, Eui-Seok;Jung, Choong-Ho;Kim, Moo-Kyung;Kim, Hyung-Tae;Kim, Yoo-Taek;Hong, Jung-Yoo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.97-102
    • /
    • 1998
  • Transition metal Cr3+ and Fe3+ ion was diffused in white sapphire {0001}, {1010} crystal plane which were grown by the Verneuil method. It enhanced and changed the physical, electrical and optical properties of sapphires. After mixing the metallic oxide and metal powder, it were used for diffusion. Metallic oxide was synthesized by precipitation method and it's composition was mainly alumina which doped with chromium or ferric oxide. In case using metallic oxide, the dopping was slowly progressed and it needed the longer duration time and higher temperature, relatively. Metallic powder was vapoured under 1x10-4 torr of vacuum pressure at 1900(iron metal) and 2050(chromium)℃, first step. Diffusion condition were kept by 6atm of N2 accelerating pressure at 2050∼2150℃. Each surface density of sapphire crystal are 0.225(c) and 0.1199atom/Å2(a). The color of the Cr-doped sapphires was changed to red. Dopping reaction was come out more deep in th plane of {1010} than {0001}. It was speculated that the planar density was one of the factors to determine diffusion effect.

  • PDF

A Study on the DC parameter matching according to the shrink of 0.13㎛ technology (0.13㎛ 기술의 shrink에 따른 DC Parameter 매칭에 관한 연구)

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1227-1232
    • /
    • 2014
  • This paper relates 10% shrink from $0.13{\mu}m$ design for core devices as well as input and output (I/O) devices different from previous poly length shrink size only. We analyzed body effect with different channel length and doping profile simulation. After fixing the gate oxide module process, LDD implant conditions were optimized such as decoupled plasma nitridation of gate oxide, TEOS oxide $100{\AA}$ before LDD implant and 22o tilt-angle(45o twist-angle) LDD implant respectively to match the spice DC parameters of pre-shrink and finally matched them within 5%.

A Study on the Memory Trap Analysis and Programming Characteristics of Reoxidized Nitrided Oxide (재산화 질화산화막의 기억트랩 분석과 프로그래밍 특성)

  • 남동우;안호명;한태현;서광열;이상은
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.17-20
    • /
    • 2001
  • Nonvolatile semiconductor memory devices with reoxidized nitrided oxide(RONO) gate dielectric were fabricated, and nitrogen distribution and bonding species which contributing memory characteristics were analyzed. Also, memory characteristics of devices according to anneal temperatures were investigated. The devices were fabricated by 0.35$\mu\textrm{m}$ retrograde twin well CMOS processes. The processes could be simple by in-situ process of nitridation anneal and reoxidation. The nitrogen distribution and bonding state of gate dielectric were investigated by Dynamic Secondary Ion Mass Spectrometry(D-SIMS), Time-of-Flight Secondary ton Mass Spectrometry(ToF-SIMS), and X-ray Photoelectron Spectroscopy(XPS). Nitrogen concentrations are proportional to nitridation anneal temperatures and the more time was required to form the same reoxidized layer thickness. ToF-SIMS results show that SiON species are detected at the initial oxide interface and Si$_2$NO species near the new Si-SiO$_2$ interface that formed after reoxidation. As the anneal temperatures increased, the device showed worse retention and degradation properties. These could be said that nitrogen concentration near initial interface is limited to a certain quantity, so excess nitrogen are redistributed near the Si-SiO$_2$ interface and contributed to electron trap generation.

  • PDF

Characterization of substrates using Fluor-doped Tin Oxide and Gallium-doped Zinc Oxide for Dye Sensitized Solar cells

  • Gong, Jae-Seok;Choe, Yun-Su;Kim, Jong-Yeol;Im, Gi-Hong;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.2-318.2
    • /
    • 2013
  • 기존의 염료감응형 태양전지(Dye Sensitized Solar Cells; DSSCs)는 최대 효율 11~12%의 광전변환효율을 가지고 있다. 이러한 한계를 극복하기 위해서 광흡수 층 최적화, 상대전극의 촉매성 증대, 전해질의 산화 환원 반응 최적화 등의 많은 연구가 이루어지고 있다. 본 연구에서는 DSSCs의 광전변환효율을 증가시키고자 기존의 투명전극 및 기판으로 사용되는 FTO(Fluor-doped Tin Oxide)를 GZO(Gallium-doped Zinc Oxide)를 사용하여 투명전극기판에 따른 계면 저항, 전류손실 등 DSSCs에 미치는 영향을 분석하였다. 본 연구에 사용된 FTO는 ${\sim}7{\Omega}/{\square}$의 면저항과 80%이상의 투과도를 갖고 있으나 Ion-Sputtering 법으로 증착된 GZO는 열처리 과정을 통하여 $3{\sim}4{\Omega}/{\square}$의 면 저항을 나타내고 80%이상의 우수한 투과도를 가지고 있다. 이러한 두 기판의 특성 비교를 위해, UV-Visble Spectrophotometer를 사용하여 광학적 특성을 분석하고, SEM(Scanning Electron Microscope), AFM(Atomic Force Microscope)를 사용하여 표면 특성을 평가하였다. 또한 전기적 특성을 분석하기 위하여 4-Point-probe를 이용하여 면 저항을 측정하였고, DSSCs의 효율 및 Fill Factor를 분석하기 위하여 Solar Simulator의 I-V measurement를 이용하였다.

  • PDF

The Synthesis of Lithium Lanthanum Titanium Oxide for Solid Electrolyte via Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 고체전해질용 Lithium Lanthanum Titanium Oxide 제조)

  • Jaeseok, Roh;MinHo, Yang;Kun-Jae, Lee
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.485-491
    • /
    • 2022
  • Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.

Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide (폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 물성 연구)

  • Kim, Kyoungseok;Chu, Yongsik
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.54-63
    • /
    • 2019
  • This study investigated on the compressive strength and the length change test with using the waste glass and graphene oxide for recycling the waste glass as the aggregate. Curing on 3-day and 7-day, the compressive strength was enhanced as the usage of waste glass was increased. Especially, the huge difference in the compressive strength was observed when the amount of substituting on the waste glass was used on 10~50%. With 50% of waste glass condition, the compressive strength was portionally enhanced as the usage of graphene oxide was increased and its value was 42.6 N/㎟ with 0.2% of graphene oxide. In terms of the length change test, the use of high content of waste glass led length change value to increase, but it was dropped down as the portion of waste glass was above 50%. Furthermore, in the case of using 50% of waste glass, the use of high amount of graphene oxide tended to decrease the length change value. That is, graphene oxide may contribute on boosting the cement hydration reaction and blocking the ion's movement.

Electrochemical Properties of Air-Formed Oxide Film-Covered AZ31 Mg Alloy in Aqueous Solutions Containing Various Anions

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.147-154
    • /
    • 2017
  • This research was conducted to investigate the electrochemical properties of the thin air-formed oxide film-covered AZ31 Mg alloy. Native air-formed oxide films on AZ31 Mg alloy samples were prepared by knife-abrading method and the changes in the electrochemical properties of the air-formed oxide film were investigated in seven different electrolytes containing the following anions $Cl^-$, $F^-$, $SO{_4}^{2-}$, $NO_3{^-}$, $CH_3COO^-$, $CO{_3}^{2-}$, and $PO{_4}^{3-}$. It was observed from open circuit potential (OCP) transients that the potential initially decreased before gradually increasing again in the solutions containing only $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions, indicating the dissolution or transformation of the native air-formed oxide film into new more protective surface films. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) showed that there was growth of new surface films with immersion time on the air-formed oxide film-covered specimens in all the electrolyte. The least resistive surface films were formed in fluoride and sulphate baths whereas the most protective film was formed in phosphate bath. The potentiodynamic polarization curves illustrated that passive behaviour of AZ31 Mg alloy under anodic polarization appears only in $CO{_3}^{2-}$, or $PO{_4}^{3-}$ ions containing solutions and at more than $-0.4V_{Ag/AgCl}$ in $F^-$ ion containing solution.