• Title/Summary/Keyword: Ion exchange model

Search Result 117, Processing Time 0.026 seconds

Characterization of Natural Zeolite for Removal of Radioactive Nuclides (방사성 핵종 제거를 위한 천연 제올라이트 특성 연구)

  • Kim, Hu Sik;Park, Won Kwang;Lee, Ha Young;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The four natural zeolites collected in Pohang and Gyeongju area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are heulandite, modenite, illite, and illite in Kuryongpo (Ku), Pohang (Po), Yangbuk-A (Ya-A), and Yangbuk-B (Ya-B) samples. The XRF analysis showed that the four zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo (Ku) zeolite was the highest compared to other zeolites. The adsorption capacities of Cs and Sr in the four natural zeolites were compared at $25^{\circ}C$. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were confirmed. The equilibrium process was descried well by Langmuir isotherm model. This study shows that Ya-A zeolite is the most efficient for the $Cs^+$ and $Sr^{2+}$ ion adsorption compared to the other natural zeolites.

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.

$TiO_2$-Encapsulated EFAL-Removed Zeolite Y as a New Photocatalyst for Photodegradation of Azo Dyes in Aqueous Solution

  • ChO, Won-Je;Sook-Ja Yoon,;Yoon, Min-Joong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Application of a new photocatalyst has been attempted to improve the efficiency and rates of photocatalytic degradation of azo dyes by using a model dye such as Methyl Orange. As a new photocatalyst, $TiO_2$ encapsulated EFAL-removed zeolite Y ($TiO_2$ /EFAL-removed zeolite Y) has been synthesized by ion-exchange in the mixture of EFAL-removed zeolite Y with 0.05 M aqueous [$(NH_4)_2 TiO(C_2O_4)_2.H_2O$] [$TiO(C_2O_4)_2.H_2O$]. This new photocatalyst has been characterized by measuring XRD, IR and reflectance absorption spectra as well as ICP analysis, and it was found that the framework structure of $TiO_2$ /EFAL-removed zeolite Y is not changed by removing the extra-framework aluminum (EFAL) from the normal zeolite Y and the $TiO_2$ inside the photocatalyst exists in the form of $(TiO^{2+})_n$ nanoclusters. Based on the ICP analysis, the Si/Al ratio of the $TiO_2$ /EFAL-removed zeolite Y and the weight of $TiO_2$ were determined to be 23 and 0.061g in 1.0g photocatalyst, respectively. It was also found that adsorption of the azo dye in the $TiO_2$ /EFAL-removed zeolite is very effective (about 80 % of the substrate used). This efficient adsorption contributes to the synergistic photocatalytic activities of the $TiO_2$ /EFAL-removed zeolite by minimizing the required flux diffusion of the substrate. Thus, the photocatalytic reduction of methyl orange (MO) was found to be 8 times more effective in the presence of $TiO_2$ /EFAL-removed zeolite Y than in the presence of $TiO_2$ /normal zeolite Y. Furthermore, the photocatalytic reduction of MO by using 1.0 g of the $TiO_2$ /EFAL-removed zeolite Y containing 0.061g of $TiO_2$ is much faster than that carried out by using 1.0 g of Degussa P-25.

  • PDF

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

Purification and Characterization of Sulfated Polysaccharide Isolated from Hot Water Extract of Pachymeniopsis elliptica (Pachymeniopsis elliptica의 열수 추출물로부터 분리한 함황 다당류의 정제 및 특성)

  • Lee, Sun-Hee;Jun, Woo-Jin;Yu, Kwang-Won;Chun, Hyug;Shin, Dong-Hoon;Hong, Bum-Shik;Cho, Hong-Yon;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1191-1197
    • /
    • 2000
  • In the preliminary study, we investigated the anti-complementary activities of 62 extracts from Korean edible seaweeds. Of those, Pachymeniopsis elliptica showed the highest anti-complementary activity. Therefore, it was purified as follows; i) PE-1 by ethanol precipitation, ii) PE-1-C by ultrafiltration, iii) PE-1-CIV by DEAE-Toyopearl 650C, and iv) PE-1-CIV-ii by Sepharose CL-6B. The purified compound, PE-1-CIV-ii, was the complexed homogeneous polysaccharide (molecular mass: 780 kDa) with 82.9% of anti-complementary activity. Also, it contained a significant amount of sulfate group (30.5%), which indicated it as a sulfated algal polysaccharide. Its structural monosaccharides were galactose (44.3%), 3,6-anhydrogalactose (34.0%), glucose (8.2%), fucose (5.4%), xylose (5.2%) and rhamnose (2.9%). After the treatment of periodate on a sample, a significant decrease in anti-complementary activity was found, which was a characteristic of bioactive polysaccharides. And-tumor activity of PE-1-A, B and C was tested in the sarcoma-180 solid tumor model. The PE-1-C with the largest molecular mass (more than 300 kDa) showed 81% of inhibition on the solid tumors, suggesting that the anti-complementary activity was, at least in part, related to anti-tumor activity. Based upon these results, the purified polysacchardes could be an immunopotentiator in vivo.

  • PDF