• Title/Summary/Keyword: Ion current

Search Result 1,474, Processing Time 0.026 seconds

1-Dimensional Simulation of the Corona Discharge using Fluid Method (유체법을 이용한 코로나 방전의 1차원 수치해석)

  • 이용신;심재학;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.172-176
    • /
    • 1997
  • It is likely that the corona discharge appears due to the motion and the multiplication of electron and ion under the nonuniform electric field. Because the motion and the multiplication of electron and ion are the function of electric field, for the simulation of the corona discharge, we have to calculate the electric field, before the calculation of the motion and the multiplication of electron and ion. In this paper, the electric field is calculated on the assumption that the gap between a hyperboloidal needle and a plane is 1-dimension, and the motion and the multiplication of electron and ion are determined by Flux-Corrected Transport method. For this purpose, we solve the electron and ion continuity equation together with Poisson equation. We calculated the current density and the electron and ion density distributions between electrodes as well as electric field distortion due to the space charge assuming that the discharge channel radius is 100${\mu}{\textrm}{m}$. In this simulation, it is found that the current density has one peak as observed by experiment, and electric field distortion is important to the formation and the stability of the corona discharge.

  • PDF

Action of Dammarane-Type Triterpenoidal Glycosides and Their Aglycones on Lipid Membranes (지질막에 대한 Dammarane-Type Triterpenoidal Glycosides와 그 Aglycones의 작용)

  • Kim, Yu.A.;Park, Kyeong-Mee;Hyun, Hack-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • We investigated the effects of ginseng glycosides and their aglycones on processes of single ion channel formation and channel properties. The glycosides, Rg, and Rb, , and their aglycones, 20-(S)-protopanaxatriol (PT) and 20-(S)-protopanaxadiol (PD) increased the membrane permeability for ions. PT, PD, Rg1, and Rb1; at concentrations of 0.5, 3.0, 10.0 and 30.0 $\mu\textrm{g}$/ml respectively; Induced single ion channel fluctuations with the life times in the range of 0.1~1005 in open states and conductances from 5 to 30 pS in 1 M KCI. At high concentrations of these substances, rapid fluctuations of transmembrane ion current with amplitude from hundred pS to dozen nS were observed. Against other substances, ginsenoside Rbl began to increase the membrane conductance at concentration of about 60 $\mu\textrm{g}$/ml without fluctuation of single ion channel. Membranes treated with PT, PD, Rg1 and Rb1 are more permeable to K+, than to Cl while zero current membrane potentials with 10 gradients of KCI were 12, 16, 8, 25 mV respectively. Key words : Membrane conductance, single ion channel, ginsenosides.

  • PDF

On-line Monitoring Using SVD in a Electron Beam Welding (전자빔 용접에서 SVD을 이용한 온라인 모니터링)

    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.97-103
    • /
    • 2000
  • Time series analysis results show the SVD is a candidate of on-line monitoring of welding penetration when the covariance matrix of a full penetration is used as a mapping function. As the reconstructed embedding vectors from the chaotic scalar time series are manipulated by the covariance matrix, the mapped tim series lie on a hyper-ellipsoid which the lengths of semi-axes are the squared eigenvalues of the covariance matrix in the case of full penetration. These visualize by two dimensional stroboscope views. The other cases like partial penetration, are different in the sense of sizes and shapes. Here we test two types of time series; the ion current and the X-ray. The ion current is better than the X-ray as an on-line monitoring signal, because the difference of the eigenvalue spectrum of the ion(between the pull penetration and partial penetration) is bigger than those of the X-ray.

  • PDF

Concentration Polarization Phenomena in Ion-Exchange Membranes (이온교환막에서의 농도분극 현상)

  • 최재환;문승현
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2002
  • Electrodialysis(ED) is a reliable and effective process for the separation and concentration of ionic compounds. However, commercial uses of ED are often hindered by the cost of the stack that mainly resulted from the ion-exchange membrane cost. In order to minimize the membrane cost, it is desired to operate ED at the highest practicable current density. In an actual ED system the high current operation is limited by the concentration polarization phenomenon. This article illustrates the transport phenomena of ions through ion exchange membranes using current-voltage relations as a characterizing method. Also recent studies on electroconvection and water-spitting phenomena caused by concentration polarization were reviewed.

Sputtering yield of the MgO thin film grown on the Cu substrate by using the focused ion beam (집속이온빔을 이용한 구리 기판위에 성장한 MgO 박막의 스퍼터링 수율)

  • 현정우;오현주;추동철;최은하;김태환;조광섭;강승언
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.396-402
    • /
    • 2001
  • MgO thin films with 1000 $\AA$ thickness were deposited on Cu substrates by using an electron gun evaporator at room temperature. A 1000 $\AA$ thick Al layer was deposited on the MgO for removing the charging effect of the MgO thin film during the measurements of the sputtering yields. A Ga ion liquid metal was used as the focused ion beam(FIB) source. The ion beam was focused by using double einzel lenses, and a deflector was employed to scan the ion beams into the MgO layer. Both currents of the secondary particle and the probe ion beam were measured, and they dramatically changed with varying the applied acceleration voltage of the source. The sputtering yield of the MgO layer was determined using the values of the analyzed probe current, the secondary particle current, and the net current. When the acceleration voltage of the FIB system was 15 kV, the sputtering yield of the MgO thin film was 0.30. The sputtering yield of the MgO thin film linearly increases with the acceleration voltage. These results indicate that the FIB system is promising for the measurements of the sputtering yield of the MgO thin film.

  • PDF

Modulation of the aqueous extract of Bupleuri radix on glycine-induced current in the acutely dissociated rat periaqueductal gray neurons

  • Sung, Yun-Hee;Shin, Mal-Soon;Kim, Tae-Soo;Lee, Sang-Won;Kim, Youn-Jung;Shin, Hye-Sook;Kim, Hong;Kim, Chang-Ju
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.549-555
    • /
    • 2008
  • Bupleuri radix (Umbelliferae), the dried root of Bupleurum Chinense DC, has been clinically used to mitigate pain sensation. The descending pain control system consists of three major components, and modulation of pain in the periaqueductal gray is the most extensively studied descending pain control system. However, the relation of Bupleuri radix on the descending pain control system has not been clarified. In the present study, modulation of the aqueous extract of Bupleuri radix on glycine-induced ion current in the acutely dissociated periaqueductal gray neurons was investigated by using nystatin-perforated patch-clamp technique under voltage-clamp condition. In the present results, the glycine-induced ion current was significantly suppressed by 0.1 mg/ml Bupleuri radix, while treatment with $10^{-5}\;M$ naltrexone, opioid receptor antagonist, alleviated Bupleuri radix-induced inhibition on glycine-induced ion current. The present study showed that the aqueous extract of Bupleuri radix may activate descending pain control system through inhibition on glycine-induced ion current in the periaqueductal gray neurons and this effect is mediated by opioid receptors.

Determination of Mequitazine in Human Plasma by Gas-Chro-matography/Mass Spectrometry with Ion-Trap Detector and Its Pharmacokinetics after Oral Administration to Volunteers

  • Kwon Oh-Seung;Kim Hye-Jung;Pyo Heesoo;Chung Suk-Jae;Chung Youn Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1190-1195
    • /
    • 2005
  • The objective of this study was to develop an assay for mequitazine (MQZ) for the study of the bioavailability of the drug in human subjects. Using one mL of human plasma, the pH of the sample was adjusted and MQZ in the aqueous phase extracted with hexane; the organic layer was then evaporated to dryness, reconstituted and an aliquot introduced to a gas chromatograph/mass spectrometer (GC/MS) system with ion-trap detector. Inter- and intra-day precision of the assay were less than 15.1 and $17.7{\%}$, respectively; Inter- and intra-day accuracy were less than 8.91 and $18.6{\%}$, respectively. The limit of quantification for the current assay was set at 1 ng/mL. To determine whether the current assay is applicable in a pharmacokinetic study for MQZ in human, oral formulation containing 10 mg MQZ was administered to healthy male subjects and blood samples collected. The current assay was able to quantify MQZ levels in most of the samples. The maximum concentration ($C_{max}$ was 8.5 ng/mL, which was obtained at 10.1 h, with mean half-life of approximately 45.5 h. Under the current sampling protocol, the ratio of $AUC_{t{\rightarrow}last}$ to $AUC_{t{\rightarrow}{\infty}}$ was $934{\%}$, indicating that the blood collection time of 216 h is reasonable for MQZ. Therefore, these observations indicate that an assay for MQZ in human plasma is developed by using GC/MS with ion-trap detector and validated for the study of pharmacokinetics of single oral dose of 10 mg MQZ, and that the current study design for the bioavailability study is adequate for the drug.

Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization (축전식 탈염에서 정전압과 정전류 운전에 따른 질산 이온의 선택적 제거율 비교)

  • Choi, Jae-Hwan;Kim, Hyun-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.269-275
    • /
    • 2015
  • The adsorption characteristics of ions were evaluated for the nitrate-selective carbon electrode (NSCE) in accordance with power supply methods. The NSCE was fabricated by coating the surface of a carbon electrode with anion-exchange resin powders with high selectivity for the nitrate ion. Capacitive deionization (CDI) experiments were performed on a mixed solution of nitrate and chloride ion in constant voltage (CV) and constant current (CC) modes. The number of total adsorbed ions in CV mode was 15% greater than that in CC mode. The mole fraction of adsorbed nitrate ion showed the maximum 58%, though the mole fraction was 26% in the mixed solution. This indicates that the fabricated NSCE is highly effective for the selective adsorption of nitrate ions. The mole fraction of adsorbed nitrate was nearly constant value of 55-58% during the adsorption period in CC mode. In the case of CV mode, however, the values increased from the initial 30% to 58% at the end of adsorption. We confirmed that the current supplied to cell is important factor to determine the selective removal of nitrate.

Analysis of the Output Ripple of the DC-DC Boost Charger for Li-Ion Batteries

  • Nguyen, Van-Sang;Tran, Van-Long;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.135-142
    • /
    • 2014
  • In the design of battery chargers, limiting the output ripple current according to the manufacturer's recommendation is important for reliable service and extended battery life. Ripple components can cause internal heating of the battery and thus reduce the service life of the battery. Care must be exerted in the design of the switching converter for the charge application through the accurate estimation of the output current ripple value. This study proposes a method to reduce the output current ripple of the converter and presents a detailed analysis of the output current ripple of the DC-DC boost converter to provide a guideline for the design of the battery charger.

Individual Charge Equalization Converter Using Selective Two Current Paths for Series Connected Li-ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.274-276
    • /
    • 2008
  • This paper proposes an individual charge equalization converter using selective two current paths for series connected lithium-ion battery strings. In the proposed equalizer, a central equalization converter acting as a controllable current source is sequentially connected in parallel with individual batteries through an array of cell selection switches. A flyback converter with a modified rectifier realizes a controllable current source. A central equalization converter is shared by every battery cells through the cell selection switch, instead of a dedicated charge equalizer for each cell. With this configuration, although the proposed equalizer has one dc-dc converter, individual charge equalization can be effectively achieved for the each cell in the strings. Furthermore, since the proposed equalizer would not allocate the separated dc-dc converter to each cell, such that the implementation of great size reduction and low cost can be allowed. In this paper, an optimal power rating design guide is also employed to obtain a minimal balancing size while satisfying equalization requirements. A prototype for eight lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing small size, and low cost.

  • PDF