• Title/Summary/Keyword: Ion current

Search Result 1,469, Processing Time 0.03 seconds

Effect of Nitrogen Ion Implantation on Corrosion Resistance of Biocompatible Ti Implant (질소이온의 주입이 생체안전성 티타늄임플란트의 내식성에 미치는 영향)

  • 최종운;손선희
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.134-139
    • /
    • 1999
  • In this study, PSII(plasma source ion implantation) was used to improve the biocompatibility of bone-anchored Ti implant. According to potentiodynamic anodic polarization test in deaerated Hank's solution, open circuit potential of ion implanted specimens were increased compare to that of unimplanted specimen ; besides, passive current density and critical anodic current density of ion implanted specimens were lower than unimplanted specimen.

  • PDF

A study on the characteristics of interlace and Mobility of Movable Ion in polyethylene Terephthalate (Polyethylene terephthalate 중의 가동이온의 계면특성과 이동도에 관한 연구)

  • Lee, Ho-Sub;Oh, Keum-Kwon;Kook, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.233-235
    • /
    • 1988
  • This study investigate that the behavior of movable ion in PET effect on the characteristics of the insulting materials. This examine that movable ion signal to. participation of $Ca^2\;Sb^3$ resulting catalyst refuse and characteristics of activation energy that is need to reionization of movable ion type and neutralized case as measuring characteristics of polarity reversal current or thermally stimulated current.

  • PDF

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Current characteristics of Cu/NaCl electrolyte/Zn electrochemical cell (구리/NaCl 전해질/아연 전기화학전지의 전류특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1626-1631
    • /
    • 2010
  • The characteristics of electric current for the voltaic cell are important for electric power applications. In this paper, an electrical equivalent model consist of three resisters and a capacitance for the Cu/NaCl solution/Zn electrochemical cell is proposed. The capacitance which exists in the Zn electrode/electrolytic interface increased according to Zn electrode area, but cannot affect almost in electric current. Complex impedance plot was used to analysis the interface effect for Zn/electrolyte. This result shows that the interface is similar with the electric transmission line. The short current measurements were conducted to investigate the effects of hydrogen peroxide, the watery sulfuric acid and NaCl aqueous solution. As the hydrogen peroxide increased, the electric current increased because the hydrogen gas being converted with the water. Also electric current increased significantly with increase of the hydrogen ion with the watery sulfuric acid and increased with increase of $Na^+$ ion and $Cl^-$ion in the NaCl electrolyte.

Simulation of a Langmuir Probe in an ECR Reactor (ECR Reactor 내의 Langmuir Probe 시뮬레이션)

  • Kim, Hoon;Porteous, Robert K.;Boswell, Rod W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1609-1611
    • /
    • 1994
  • In ECR and helicon reactors for plasma processing, a high density plasma is generated in a source region which is connected to a diffusion region where the processing takes place. Large density and potential gradients can develop at the orifice of the source which drive ion currents into the diffusion region. The average ion velocity may become the order of the sound velocity. Measurements of the ion saturation current to a Langmuir probe are used as a standard method of determining the plasma density in laboratory discharges. However, the analysis becomes difficult in a steaming plasma. We have used the HAMLET plasma simulator to simulate the ion flow to a large langmuir probe in an ECR plasma. The collection surface was aligned with the Held upstream, normal to the field, and downstream. ion trajectories through the electric and magnetic fields were calculated including ion-neutral collisions. We examines the ratio of ion current density to plasma density as a function of magnetic field and pressure.

  • PDF

Characterization of ECR Plasma by Using Ion Analyzer and Its Silicon Etching (이온 분석기에 의한 ECR 플라즈마의 특성 분석 및 실리콘 식각에 관한 연구)

  • 이석현;이호준;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.492-501
    • /
    • 1992
  • In this paper, an ion analyzer is used in conjunction with a Langmuir probe to study the chracteristics of ECR plasma such as the ion temperature, ion current density and electron temperature as the operating pressure, ${\mu}$-wave power and axial position change, Silicon etching has been performed with RF-biasing and its etching chracteristics have been discussed in terms of the ion energy distribution function. The maximum value of ion current density appears in the range of 10S0-3T mbar and the broadening of ion energy distribution function increases as pressure increases. Therefore, as pressure decreases, anisotropy increases but selectivity to photoresist decreases.

The Characteristic Study on the Extraction of a Co Ion in the Metal Ion Implanter (금속이온 주입기에서의 Co 이온의 인출 특성 연구)

  • Lee, Hwa-Ryun;Hong, In-Seok;Trinh, Tu Anh;Cho, Yong-Sub
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2009
  • Proton Engineering Frontier Project (PEFP) has supplied the metal ions to users by using an installed metal ion implanter of 120 keV. At present a feasibility study is being performed for a cobalt ion implantation. For a cobalt ion extraction we studied to sustain the high temperature($648^{\circ}C$) for metal ions vaporization from a cobalt chloride powder by using an alumina crucible in the ion source. The temperature condition of the crucible was satisfied with the plasma generation at the arc current of 120V and EHC power of 250W. The extracted beam current of $Co^+$ ions was dependent on the arc current in the plasma. The maximum beam current was $100{\mu}A$ at 0.18A of the arc current. The 3 peak currents of the extracted ions such as $Co^+$, $CoCl^+$ and $Cl^+$ were obtained by adjusting a mass analyzing magnet and the $Co^+$ ion beam peak current fraction as around 70% in the sum of the peak currents. The fluence of the implanted cobalt ions at the $10{\mu}A$ of the beam current and 90 minutes of the implantation time into an aluminum sample as measured around $1.74{\times}10^{17}#/cm^2$ by a quantitative analysis method of RBS (Rutherford Backscattering Spectrometry).

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Characteristics of electric field in the liquid metal ion source with a suppressor

  • Min, Boo-Ki;Cho, Byeong-Seong;Oh, Hyun-Joo;Kang, Seung-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.283-283
    • /
    • 2010
  • The liquid metal ion sources(LMIS) in FIB system have many advantages of high current density, high brightness and low ion energy spread. Most FIB systems use LMIS because the ion beam spot size of LMIS is smaller than other ion sources. LMIS is basically emitted by an extractor but the new electrode called the suppressor is able to control the emission current. We investigated characteristics LMIS with a suppressor, the function of the suppressor in LMIS, the change of the electric field by the suppressor and the advantages of using the suppressor. The characteristics of the threshold voltage and current-voltage (I-V) were observed under the varying extracting voltage with floated suppressor voltage, and under the varying suppressor voltages with fixed extractor voltage. We also simulated LMIS with the suppressor through CST(Computer Simulation Technology). The emission current increases as the suppressor voltage decreases because the suppressor voltage which restrains the electric field goes down, The threshold voltage increases as the suppressor voltage increases. We can explain characteristics and functions of LMIS with a suppressor using the electric field.

  • PDF

Analog-Digital Switching Mixed Mode Low Ripple - High Efficiency Li-Ion Battery Charger (아날로그 - 디지털 스위칭 혼합형 저 리플- 고 효율 Li-Ion 배터리 충전기)

  • Jung, Sang-Hwa;Woo, Young-Jin;Kim, Nam-In;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2531-2533
    • /
    • 2001
  • This paper describes a low noise and high efficiency analog-digital switching mixed mode battery charger for production facilities of Li-Ion batteries. The requirements for battery chargers for production facilities are very strict. The accuracy of output voltage and output current should be below 0.1% with very low ripple current. Therefore analog type linear regulators are widely used for battery charger in spite of their inefficiency and bulkiness. We combined linear regulator as a voltage source with digital switching converter as a dependent current source. Low current ripple and high accuracy are obtained by linear regulator while high efficiency is achieved by digital switching converter. Experimental results show that proposed method has 0.1% ripple and 90% efficiency at an output current of 1A for a battery voltage of 4V.

  • PDF