• Title/Summary/Keyword: Ion and neutron irradiation

Search Result 12, Processing Time 0.014 seconds

Determination of volatile and residual iodine during the dissolution of spent nuclear fuel (사용 후 핵연료 용해 중 휘발 및 잔류 요오드 분석)

  • Kim, Jung Suk;Park, Soon Dal;Jeon, Young Shin;Ha, Young Keong;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.395-406
    • /
    • 2009
  • The determination of iodine in the spent nuclear fuel and the volatile behavior during its acid dissolution have been studied by NAA(neutron activation analysis) and electron probe microanalysis (EPMA). Simulated spent fuels (SIMFUELs) were dissolved in $HNO_3$(1+1) at $90^{\circ}C$ for 8 hours. The iodine remained in a dissolver solution after dissolution, and that condensed in dissolution apparatus and trapped in the adsorbent by volatilization during the dissolution were determined, respectively. The condensed iodine was recovered by the redistillation with $HNO_3$(1+1) after transfer of the dissolver solution. The iodines in the dissolver and redistilled solution were separated by solvent extraction followed by ion exchange or precipitation method and determined by RNAA (radiochemical neutron activation analysis). The ion exchange column and filtration kit used for the isolation of iodine, which were prepared with a polyethylene tube, were used as an insert in the pneumatic tube for neutron irradiation. The iodine volatilized during the dissolution of SIMFUELs was collected in a trapping tube containing Ag-silica gel (Ag-impregnated silica gel) adsorbent, and the distribution of iodine trapped in the adsorbents were determined by EPMA. The adsorbing characteristics shown with the SIMFUELs were compared with those shown with a real spent fuel from the nuclear power plant.

A Study on the Neutron Activation Analysis of Noble Metals in the Ancient Coin (고전(古錢)내 귀금속 원소의 중성자 방사화 분석에 관한 연구)

  • Kwon Soo Chun;Chul Lee;Myung-Zoon Czae;Jong Du Lee;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.961-966
    • /
    • 1993
  • The determination of noble metals such as Ir, Au and Ag in the ancient coins has been studied. For the measurement of the activity of $^{192}Ir,\;^{198}Au\;and\;^{110m}Ag$, radiochemical separations including solvent extraction and ion-exchange chromatography were applied to reduce the interference of high energy ${\gamma}$-ray emitted from various radionuclides with long half-life. As a results, $10^{-11}$ g/g level of Ir could be detected and it was found that the three kinds of the detection limits, i.e., critical, detection, quantitative limit, calculated by the method proposed by Currie, were enhanced. Prior to the re-irradiation with neutron, inactive carrier was added in order to determine the recovery yield of Ir in the radiochemical separation. The average recovery yields of Ir, Au and Ag in the 5 coins were 65.3%, 98.5%, 99.5%, respectively.

  • PDF