• Title/Summary/Keyword: Ion Size

Search Result 1,129, Processing Time 0.03 seconds

Formation of Porous Boehmite for Supporting Enzyme Catalyst (효소촉매 담지체용 다공성 베마이트 제조)

  • Yem, Hye Suk;Kim, Ki Do;Jun, Chang Lim;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.188-193
    • /
    • 2006
  • Synthesis of Boehmite particles were performed through the precipitation of aluminium nitrate ($Al_{3}(NO_{3})_3{\cdot}9H_{2}O$) with ammonia water ($NH_{4}OH$) by changing solution pH, mixing procedure, temperature, and feeding flux. The influence of the synthesis condition, which affected on the pH range of the Boehmite formation, particle morphology and pore property, was investigated. The Boehmite particles were formed in the reaction solution of pH 7.5~9. The particles prepared by P2jet type which maintained the pH uniformly during the precipitation resulted in homogeneous particles and pores because of the constant concentration of the reacted ion in the solution. It was resulted in the improvement of the specific surface area and pore volume of the particle at the same time. With the increasing of temperature and the decreasing of the feeding flux, it was occurred the large specific surface area and pore volume. Also it was presented the fibrillar shaped particles upper $60^{\circ}C$ of the reaction temperature. In this study, the optimal condition of the porous Boehmite was in P2jet type with $90^{\circ}C$ of reaction temperature and 2.5 mL/min of the feeding flux. At this time, the specific surface area, pore volume, and average pore size was $385.46m^2/g$, 1.0252 mL/g, 10 nm, respectively.

Synthesis of Titanium Dioxides Using Low Temperature Combustion Method and Photocatalytic Decomposition of Methylene Blue (저온연소법에 의한 이산화티탄의 합성 및 메틸렌블루의 광촉매 분해반응)

  • Baek, Seung Hee;Jung, Won Young;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.329-334
    • /
    • 2009
  • Yttrium ions doped $TiO_2$ particles have been prepared using a low temperature combustion method. The physical properties were investigated, together with the activity of $TiO_2$ particles as a photocatalyst for the decomposition of methylene blue. From XRD results, the major phase of all the $TiO_2$ particles prepared under basic condition was an anatase structure but a rutile peak was observed when they are prepared under acidic condition. The crystallite size of $TiO_2$ particles was decreased as the molar ratio of CA/TTIP increased. The photocatalytic activity increased with an increase of CA/TTIP molar ratio and pH in the solution. In addition, the doping of 1.0 mole% yttrium ion on the $TiO_2$ enhanced the photocatalytic activity and showed the higher activity than commercial P-25 catalyst.

A Study of Mobile Content Generation System using 2-Dimensional bar code in Smart Device Environment (스마트 기기 환경에서 2차원 바코드를 활용한 모바일 콘텐츠 생성 시스템 연구)

  • Jin, Byung-Wook;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2349-2354
    • /
    • 2014
  • While the number of smart phone subscribers excessing 30 million people, Korea is leaping into the 'smart powerhouse' from IT powerhouse. The popularizat+ion of smart devices so called 'PC in the hand', brought surely change to people's life style, and also it had led to a revolutionary change to and also to business and government. In several corporations of each countries, a variety of smart devices smart devices such as smart phone, tablet PC and E-books have been developing. Nowadays, the usage of the smart phone is not only the simple function calling. It has become a culture of the terminal type in the hand anywhere at any time, which makes can communicate with the others in anywhere and anytime. However, some of the subscribers who visit the website for PC version with the mobile devices screen, can feel kind of discomfort while surfing the net on a smartphone devices because the install of the existing video and flash files and the screen size for computer is not available for mobile devices. Therefore, in this paper, we studied on effective mobile contents generation program using QR code that is two dimensions bar code under the smart device environment. Also, unlike previous QR code generator that decorate standardized design, we realize an original QR code generation system from user perspective.

Synthesis, Structure and Electrical Properties of $Sr_1-_xY_xMnO_3$ System ($Sr_1-_xY_xMnO_3$의 합성 및 조성에 따른 결정구조와 전기적 성질변화)

  • Park, So Jeong;Kim, Seong Jin
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.785-791
    • /
    • 1994
  • The $Sr_1-_xY_xMnO_3$ (x = 0.0∼1.0) system was synthesized using amorphous citrate process. The stability of various structures and the electronic transport properties of this system were investigated. X-ray diffraction study indicated that the $Sr_1-_xY_xMnO_3$ system has three different structures depending on composition, namely, 4L-hexagonal perovskite (when x is less than 0.3), pseudocubic perovskite (when x is 0.3∼0.7), and hexagonal nonperovskite (when x is larger than 0.7) structures. The structural changes and electronic properties were interpreted based on two factors, i.e., the size of cations and the oxidation state of manganese ion. When the concentration of Y substitution exceeds 30%, the Mn-Mn repulsive interaction dominates over intermetallic attraction, and thus structure changes to pseudocubic perovskite. In perovskite phase the unit cell dimensions increases with increasing $Mn^{3+}$ ions due to yttrium substitution. The band gap of $Sr_{0.9}Y_{0.1}MnO_3$ is greater than that of $Sr_{0.5}Y_{0.5}MnO_3$. The greater band gap of $Sr_{0.9}Y_{0.1}MnO_3$ indicates that the 4L-hexagonal structure is more stabilized than cubic perovskite due to the Mn-Mn bond.

  • PDF

The Coating Effects of Al2O3 on a Li[Li0.2Mn0.54Co0.13Ni0.13]O2 Surface Modified with (NH4)2SO4

  • Oh, Ji-Woo;Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1516-1522
    • /
    • 2014
  • A series of 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ surface treatments were applied to $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates. The $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates were synthesized using a co-precipitation method. Sample (a) was left pristine and variations of the 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ were applied to samples (b), (c) and (d). XRD was used to verify the space group of the samples as R$\bar{3}$m. Additional morphology and particle size data were obtained using SEM imagery. The $Al_2O_3$ coating layers of sample (b) and (d) were confirmed by TEM images and EDS mapping of the SEM images. 2032-type coin cells were fabricated in a glove box in order to investigate their electrochemical properties. The cells were charged and discharged at room temperature ($25^{\circ}C$) between 2.0V and 4.8V during the first cycle. The cells were then charged and discharged between 2.0V and 4.6V in subsequent cycles. Sample (d) exhibited lower irreversible capacity loss (ICL) in the first charge-discharge cycle as compared to sample (c). Sample (d) also had a higher discharge capacity of ~250 mAh/g during the first and second charge-discharge cycles when compared with sample (c). The rate capability of the $Al_2O_3$-coated sample (b) and (d) was lower when compared with sample (a) and (c). Sample (d), coated with $Al_2O_3$ after the surface treatment with $(NH_4)_2SO_4$, showed an improvement in cycle performance as well as an enhancement of discharge capacity. The thermal stability of sample (d) was higher than that of the sample (c) as the result of DSC.

The Pressure Effect of the Association of 2,4,6,N-Tetramethyl Pyridinium Iodide in Ethanol-Water Mixture (에탄올-물 혼합용매내에서 2,4,6,N-Tetramethyl Pyridinium Iodide의 회합에 대한 압력효과)

  • Jung-Ui Hwang;Jong-Gi Jee;Young-Hwa Lee;Uei-Ha Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 1984
  • The ionic association constant(K) of 2,4,6, N-tetramethyl pyridinium iodide (TeMPI) in 95 volume percentage ethanol-water mixture were determined by a modified UV and conductance method at $25^{\circ}C$ to $50^{\circ}C$ under 1 to 2,000 bars. The K values increase with increasing pressure and have maximum value at $40^{\circ}C$. The partial molar volume hange (${\Delta}V$) has relatively small negative value and the absolute values of ${\Delta}$ are minimum at $40^{\circ}C$. The ion size parameter(a) of TeMPI have maximum value at $40^{\circ}C$. {\Delta}H^{\circ}$ values are zero, positive and negative at 40^{\circ}C$, $25^{\circ}C$ and $50^{\circ}C$ respectively. Other thermodynamic parameters such as the changes of standard entropy ({\Delta}S^{\circ}$) and free energy {\Delta}G^{\circ}$ were evaluated. From these experimental results, we came to conclusion that TeMPI is stabilized by the elevation of pressure and that of temperature below $40^{\circ}C$ but weakly dimerized at $40^{\circ}C$ because of the intermolecular hydrophobic interaction of eight methyl groups of two molecules. And it thermally decomposed above $50^{\circ}C$.

  • PDF

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Some Aspects of High Lysine Maize Breeding using Opaque-2 Gene (Opaque-2 인자를 이용한 고라이신 옥수수의 육종)

  • Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1969
  • Several field and sweet corn varietiea from several sources were crossed with a variety carrying the opaque-2 gene to determine the phenotypic interactions in the breeding of high lysine maize. Although opaque-2 lines showed lower protein content than the corresponding normal varieties, there was no correlation between the protein levels of the two types. opaque-2 maize contained more lysine, but no relationship was found between the protein content and the lysine content of either normal or opaque-2 types, suggesting that high lysine corn using the opaque-2 gene may be developed independently from the protein content. The F2 segregation ratios for normal and opaque-2, 100-kernel weights, percentage seed set, opaque-2 phenotype, disease susceptibility, and the relationship between protein and lysine content of normal and opaque-2 were investigated. The determinations and observations were made on the F2, F3, and BC1 Lysine content was determined by the ion exchangeresin combined with paper chromatography method. Most crosses segregated in a 1-opaque-2 : 3-normal ratio as expected. Opaque-2 segregates were lighter than the normal type and smaller in size. A mottled phenotype of opaque-2 maize observed in the Philippines yellow endersperm. In some varieties opaque-2 maize was very susceptible to the ear and kernel rot disease. No. 5(female) and opaque-2(male). Selectlon of a double mutant of waxy and opaque-2 by using the iodine technique and electric lamp was discussed. opaque-2 and floruy-2 were not allels. Different percentage of seed set were observed in the segregation of aewx crossed with opaque-2. An unusual gametophytie relationship was involved in a cross between Glutinous.

  • PDF

Design and operational characteristics of cw and KLM Ti : sapphire lasers with a symmetric Z-type cavity configuration (Z-형태의 대칭형 레이저 공진기 구조를 갖는 연속 발진 및 Kerr-렌즈 모드-록킹되는 티타늄 사파이어 레이저의 설계와 동작 특성)

  • Choo, Han-Tae;Ahn, Bum-Soo;Kim, Gyu-Ug;Lee, Tae-Dong;Yoon, Byoung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.347-355
    • /
    • 2002
  • We have constructed a high efficiency and broad tunable cw Ti:sapphire laser with a four-mirror symmetric Z-type laser cavity to increase the laser usability. From theoretical analyses and experimental data for a symmetric Z-type laser cavity containing a Kerr medium, the cavity mode size and the Kerr-lens mode-locking (KLM) strength for KLM lasers can be confirmed as function of the position in the cavity, the intracavity laser power, and the stability parameter. As a result, the slope efficiency and the maximum average output power of cw Ti:sapphire laser at 5 W pumping power of Ar-ion laser were 31.3% and 1420 ㎽ respectively. The tunablility was ranged from 730 ㎚ to 908 ㎚ with average output power above 700 ㎽. We obtained the KLM operation easily by self-aperturing effect in the Kerr medium and the slope efficiency and the maximum average output power of KLM Ti:sapphire laser was 16% and 550 ㎽ respectively. The spectral bandwidth was 33 ㎚ at the center wavelength of 807 ㎚ and the pulse width was 27 fs with a repetition rate of 82 ㎒.

Investigation of defects and surface polarity in AlN and GaN using wet chemical etching technique (화학적 습식 에칭을 통한 AlN와 GaN의 결함 및 표면 특성 분석)

  • Hong, Yoon Pyo;Park, Jae Hwa;Park, Cheol Woo;Kim, Hyun Mi;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.196-201
    • /
    • 2014
  • We investigated defects and surface polarity in AlN and GaN by using wet chemical etching. Therefore, the effectiveness and reliability of estimating the single crystals by defect selective etching in NaOH/KOH eutectic alloy have been successfully demonstrated. High-quality AlN and GaN single crystals were etched in molten NaOH/KOH eutectic alloy. The etching characteristics and surface morphologies were carried out by scanning electron microscope (SEM) and atomic force microscope (AFM). The etch rates of AlN and GaN surface were calculated by etching depth as a function of etching time. As a result, two-types of etch pits with different sizes were revealed on AlN and GaN surface, respectively. Etching produced hexagonal pits on the metal-face (Al, Ga) (0001) plane, while hexagonal hillocks formed on the N-face. On etching rate calibration, it was found that N-face had approximately 109 and 15 times higher etch rate than the metal-face of AlN and GaN, respectively. The size of etch pits increased with an increase of the etching time and they tend to merge together with a neighbouring etch pits. Also, the chemical mechanism of each etching process was discussed. It was found that hydroxide ion ($OH^-$) and the dangling bond of nitrogen play an important role in the selective etching of the metal-face and N-face.