• Title/Summary/Keyword: Ion Selectivity Coefficients

Search Result 32, Processing Time 0.018 seconds

The Solvent Extraction of Univalent Cation Picrates by New Podands (새로운 포단드에 의한 피크린산 일가 양이온 염의 용매추출)

  • Jung, Jong Hwa;Cho, Sung Bae;Kim, Jineun;Kim, Jae Sang;Lee, Shim Sung
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 1993
  • Some new podands containing phenyl(B), benzyl(Bz), pyridine(Py), quinoline(Q) and naphthalene(Np) as end-groups, and oxygen(O) and sulfur(S) in ether chains as donor atoms have been synthesized. The univalent cation binding characteristics of these podands have been studied by NMR titration and solvent extraction. By NMR titration we have found that the most of podands form 1:1 complexes with $Ag^+$ ion. Especially, the substituted sulfur atoms in ether chains show the effects to enhance the stabilities. We also carried out the extractions of univalent cation picrates including alkaline metal, $Ag^+$, $Tl^+$ and $NH_4{^-}$ ions from aqueous to chloroform layer by using these podands. We found that the extractabilities of $Ag^+$ ion with the quinoline-containing podands such as, $Q_2O_4$, $Q_2O_5$ and $BQO_5$ were 86.8, 86.6 and 48.0% respectively, but the naphthalene-containing podands such as, $Np_2O_4$ and $Np_2O_5$ extracted quite small amount. Otherwise, in cases of $Bz_2O_3S_2$(89.4%), $B_2O_2S_2$(96.8%), $B_2O_3S_2$(58.9%), $Py_2O_2S_2$(58.8%), $Py_2O_3S_2$(42.1%), and $B_2O_4S$(15.0%), interestingly, $Bz_2O_3S_2$ which have sulfur atoms and benzyl groups showed the highest extraction selectivity for $Ag^+$ ion. This result seems due to not only the strong interaction of $Ag^+$ ion with sulfur donors according to the HSAB theory, but also the effective ${\pi}-{\pi}$ stacking interaction between two aromatic end-groups which is enhanced by the flexible methylene spacing group in benzyl groups instead of phenyl groups. The extraction coefficients gave the similar tendency as the extractabilities and the stabilities. From these results, it could be concluded that the predominant factor affected to extraction coefficients is the stabilities, which are strongly influenced by the structures of podands.

  • PDF

Determination of Complex Formation Constant of Sodium-Selective Ionophores in Solvent Polymeric Membranes (용매 고분자막 상에 고정된 나트륨 이온선택성 물질의 착물형성상수 결정)

  • Kang, Tae Young;Kim, Sung Bae;Oh, Hyon Joon;Han, Sang Hyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • The complex formation constants (${\beta}_{MLn}$) of potassium and various sodium-selective neutral carriers in solvent polymeric membranes have been determined using solvent polymeric membrane-based optodes and ion-selective electrodes (ISEs). Two different types of PVC-based membranes containing the H^+selective chromoionophore (ETH 5294) with and without a sodium ionophore (4-tert-bntylcalix[4]arenetetraacetic acid tetraethyl ester, ETH 2120, bis[(12-crown-4)methyl] dodecylmethylmalonate or monensin methyl ester) were prepared and their optical responses to either the changes in alkali metal cation (e.g., sodium and potassium) concentrations at a fixed pH (0.05 M Tris-HCl, pH 7.2) or varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The same type of membranes were also mounted in conventional electrode body and their potentiometric responses to varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The complex formation constants of the ligand could be calculated from the calibration plots of the relative absorbance vs. the activity ratios of cation and proton ($a_{M^+}/a_{H^+}$) and of the emf vs. pH. It was confirmed that the ratio values of the complex formation constants for the primary and interfering ions are closely related to the experimental selectivity coefficients of ISEs.

  • PDF