• 제목/요약/키워드: Ion Probe

검색결과 280건 처리시간 0.031초

아연의 대기부식에 미치는 주기적 침적/건조 효과 (Effect of wet/dry transition on the atmospheric corrosion of Zn)

  • Kim, Ki-Tae
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1998년도 춘계학술발표회 초록집
    • /
    • pp.3-3
    • /
    • 1998
  • The atmospheric corrosIOn properties of Zinc (Zn) under wet/dry transition of $H_20$ film were investigated in this study. The atmospheric corrosion of metal is usually occurred as a result of repetitious thickness transition (so called wet/dry transition) of liquid phase which is covering the metal surface. Corrosion potential and the polarization behaviour of Zn during liquid film thickness transition were measured by Kelvin probe method which IS using vibrating reference electrode without touching the liquid film. The oxidized states of Zn as a result of successive wet/dry transition were also investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion potential and the corrosIOn rate of Zn both are increasing during drying. However, the corrOSIon rate is decreasing again when the Zn surface is completely dried while the corrosion potential still remains high. This behaviour can be explained by the polarization behaviour change of Zn according to the $H_20$ film thickness change. The completely dried surface is consisted mostly with Zn and ZnO phases. After a number of cycles of wet/dry transition, however, the oxidized Zn phase of ${\varepsilon}-Zn(OH)_2$, which has rather voluminous and defected structure, were found.

  • PDF

Effects of Long-Term Fertilization for Cassava Production on Soil Nutrient Availability as Measured by Ion Exchange Membrane Probe and by Corn and Canola Nutrient Uptake

  • Hung T. Nguyen;Anh T. Nguyen;Lee, B.W.;J. Schoenau
    • 한국작물학회지
    • /
    • 제47권2호
    • /
    • pp.108-115
    • /
    • 2002
  • The effects of long-term fertilization on soil properties and nutrient availability are not well documented for cassava cultivation in Vietnam. In 1990, a field research plots were established with 12 treatments to test the effect of different rates of nitrogen (N), phosphorus (P) and potassium (K) on soil properties in Acrisols at Thai Nguyen University in Northern Vietnam. In 1999, composite soil samples (0 to 20cm depth) were collected from eight selected plots for measurements of nutrient supply rates by ion exchange membrane probes and for growing corn and canola in a growth chamber with and without added lime. Generally, long-term nitrogen (N) fertilization increased available N supply rates but decreased available potassium (K) and magnesium (Mg). Long-term phosphorus(P) applications increased canola N, calcium (Ca) and Mg uptake. Canola P uptake increased with increased P rates only when lime was added. Long-term K applications increased canola N, K, Ca, Mg uptake but only significantly increased corn N uptake. Liming significantly increased uptake of N, P, K, Ca, Mg and S for both corn and canola. However, N $H_{4-}$N, K and Mg soil supply rates were reduced when lime was added, due to competition between Ca from the added lime and other nutrients.

전기장에 의한 $Cs^+-Na^+$ 이온교환으로 제작된 유리 광도파로 (Glass optical waveguides made by electric-field-assisted $Cs^+-Na^+$ ion exchange)

  • 김영철;원영희;조두진
    • 한국광학회지
    • /
    • 제9권2호
    • /
    • pp.86-91
    • /
    • 1998
  • 소오다 석회유리를 기판으로 하고 전기장에 의한 $Cs^+-Na^+$ 이온교환으로 다중 모우드 평면 광도파로를 제작하였다. 광도파로의 각 모우드들에 대한 실효굴절률을 측정하였으며 변형 Fermi 함수 모양으로 맞춤한 굴절률 분포형태를 전자 현미분석기로 얻은 농도분포형태와 비교분석하여 설명하였다. 정량적인 분석결과 약 90%의 $Na^+$이온이 $Cs^+$이온으로 치환되었다. 주어진 인가전기장, 확산온도 및 확산시간으로부터 광도파로 깊이, 이동도 및 굴절률 변화를 구하는 식을 세웠다. 이 식에서 성립하는 광도파로의 깊이와 확산시간의 제곱근 사이의 선형관계 및 광도파로의 깊이와 인가전기장 사이의 선형관계를 실험으로 확인하였다.

  • PDF

$^{13}C-^{1}H$ Coupling Constant as a Criterion for the Presence of $\pi$ Bridging in Substituted 9-Benzonorbornenyl Cation

  • Gweon-Young Ryu;Jung-Hyu Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.546-548
    • /
    • 1993
  • The discrete structure of substituted 9-benzonorbornenyl cation 3a and 3c was studied using the empirical ${\Delta}$J equation which was developed by Kelly and coworker$^5$. The ${\Delta}$J values of substituted 9-benzonorbornenyl cations were obtained from p-methyl-6,7-dimethyl benzonorbornen-9-yl (3a) and 9-methyl-6,7-dimethyl benzonorbonen-9-yl (3c) cations under stable ion conditions, and were compared with those of the corresponding ketone analog; these cations were generated by dissolving the corresponding carbinols in superacid at -120$^{\circ}$C and the nmr spectra taken at -60$^{\circ}$C~-90$^{\circ}$C. The ${\Delta}$J values are 8.7 Hz for the bridgehead carbons in cation 3c and 3.1 Hz for cation 3b. The ${\Delta}$J values at C5,8 in fused benzene ring are 14.3 Hz for cation 3c and 8.7 Hz for cation 3a. The excellent correlation of the ${\Delta}$J values with 1$^9F$ chemical shifts of p-fluorophenyl-6,7-dimethylbenzonorbornenyl cation (3d) indicate that ${\Delta}$J value is a reliable probe to charge density at adjacent cationic carbon. These NMR parameters strongly support that the symmetrically ${\pi}$-bridged nonclassical structure (type 2) of substituted 9-benzonorbornenyl cations in stable ion conditions.

리튬이온전지용 비정질 탄소 도전재의 표면적 및 흑연화도에 따른 SiOx 음극 활물질 특성 연구 (Effect of Surface Area and Crystallinity of Amorphous Carbon Conductive Agent in SiOx Anode on the Performance of Lithium Ion Battery )

  • 강형규;김성수
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.29-35
    • /
    • 2023
  • Herein we investigated the effect of the conductive agent on the electrochemical performance of the SiOx anode. SiOx anodes have a relatively low volume expansion (~160%) compared to Pure-silicon, but have a problem in that they have a poor electrical conductivity characteristic. In this study, physical and electrochemical measurements were performed using two 0-dimensional amorphous carbon conductive agents with different crystallinity and surface area. The crystal structure of the conductive agents and the local graphitization degree were analyzed through XRD and Raman, and the surface area of the particles was observed through BET. In addition, the electrical performance according to the graphitization degree of the conductive agents was confirmed through a 4-point probe. As a result of the electrochemical cycle and rate performance, it was confirmed that the performance of SiOx using a conductive agent having a low graphitization degree and a high surface area was improved. The results in this study suggest that the graphitization degree and surface area of the amorphous carbon conductive agent may play an important role in the SiOx electrode.

오염토양처리를 위한 혼합 Fenton 공정에서 용존 철이온이 오염산화처리에 미치는 역할에 관한 연구 (A Role of Dissolved Iron ion in Combined Fenton Reaction for Treatment of TNT Contaminated Soil)

  • 서승원;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권6호
    • /
    • pp.76-82
    • /
    • 2006
  • 일반적으로 Fenton 반응 공정을 실제 오염토양에 적용하기에는 다소 무리가 있다. 그 이유로 대표적인 Fenton 반응공정인 고전적인 Fenton 반응은 낮은 pH에서 우수한 처리효율을 보이고 있기 때문이다. 또한, 철이온의 투입을 대신하여 철광석을 이용하는 Fenton-like 반응도 철광석 표면에서 hydroxyl radical을 생성하나 높은 pH에서는 다량의 수산화물과의 경쟁반응으로 인하여 그 활성이 상당히 감소되어진다. 이러한 단점을 보완하기 위하여 중성영역의 pH에서 철이온-chelating agent의 복합체를 촉매로 사용하는 modified Fenton 반응이 제시 되어지고 있다. 이 처리방식의 경우에는 다량의 철이온의 투입이 요구되어진다. 따라서, 본 실험에서는 Fenton-like 반응과 modified Fenton 반응의 효율적인 접목으로 중성영역에서의 chelating agent의 투입으로 철광석으로부터 철이온을 용출하여 복합체를 형성함으로 혼합 Fenton 공정에서 부가적인 촉매로 사용되어짐으로 오염물 처리효율을 크게 향상시킨 기법 개발을 진행하였다. 2,4,6-Trinitrotoluene은 본 실험에서 오염원으로 사용하였으며, chelating agent에 의해 용출된 철이온이 약 0.1 mM 이상일 경우 Fenton-like 반응에 비하여 상당히 좋은 제거효율을 보였다. 혼합 Fenton 공정의 최대제거효율은 magnetite-NTA 시스템으로써 약 76%의 제거효율과 magnetite-EDTA의 경우 약 56%로서 이는 Fenton-like 반응에 비하여 약 40-60% 정도의 제거효율이 향상된 결과이다.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Measurement of Partial Conductivity of 8YSZ by Hebb-Wagner Polarization Method

  • Lim, Dae-Kwang;Guk, Jae-Geun;Choi, Hyen-Seok;Song, Sun-Ju
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.299-303
    • /
    • 2015
  • The electrolyte is an important component in determining the performance of Fuel Cells. Especially, investigation of the conduction properties of electrolytes plays a key role in determining the performance of the electrolyte. The electrochemical properties of Yttrium stabilized zirconia (YSZ) were measured to allow the use of this material as an electrolyte for solid oxide fuel cells (SOFC) in the temperature range of $700-1000^{\circ}C$ and in $0.21{\leq}pO_2/atm{\leq}10^{-23}$. A Hebb-Wagner polarization experimental cell was optimally manufactured; here we discuss typical problems associated with making cells. The partial conductivities due to electrons and holes for 8YSZ, which is known as a superior oxygen conductor, were obtained using I-V characteristics based on the Hebb-Wagner polarization method. Activation energies for holes and electrons are $3.99{\pm}0.17eV$ and $1.70{\pm}0.06eV$ respectively. Further, we calculated the oxygen ion conductivity with electron, hole, and total conductivity, which was obtained by DC four probe conductivity measurements. The oxygen ion conductivity was dependent on the temperature; the activation energy was $0.80{\pm}0.10eV$. The electrolyte domain was determined from the top limit, bottom limit, and boundary (p=n) of the oxygen partial pressure. As a result, the electrolyte domain was widely presented in an extensive range of oxygen partial pressures and temperatures.

미소전극 센서를 이용한 탈질 생물막내의 이온 농도측정 (Measurement of Ion Concentrations in Denitrifying Biofilm by Microelectro-sensor)

  • 장암;이쌍구;김성민;김인수
    • 대한환경공학회지
    • /
    • 제22권10호
    • /
    • pp.1833-1841
    • /
    • 2000
  • 생물학적 수처리공정의 생물막 (호기성 혹은 혐기성) 내의 생물막 두께 및 이온들의 농도구배등에 대한 모델링을 위하여 종래에 이론적으로만 접근하던 방법 대신, 실제로 생물막을 이동하며 측정하여 분석하는 첨단 연구 방법인 미소전극탐침을 제작하여 적용하였다. 미소전극 센서장치에서 가장 중요한 요소 중에 하나인 working 미소전극탐침은 생물막내의 전위차 (EMF, electromotive force)를 측정할 때 오염과 파손 등에 의해서 수명이 짧아지기 쉽기 때문에, 각각의 working 미소전극탐침의 제작방법에 대하여 논의하였으며, 제작된 pH와 $NO_3{^-}$ 미소전극탐침으로 탈질 미생물막 이온들의 농도를 막 깊이별로 측정하였다. 미소전극 센서장치에 의한 측정결과, 탈질 미생물막 내부에서의(생물막 표면에서 약 $350{\mu}m$) pH는 8.3 정도로 벌크용액상(bulk solution)의 pH 8보다 약간 상승하였으며, $NO_3{^-}$의 농도는 벌크용액상의 30 mg N/L농도에서 최종 4 mg N/L 청도로 나타났다.

  • PDF

Neutron Radiography를 이용한 고탄소흑연강에서 붕소 분석 (Boron Analysis in High Carbon Graphitized Steel using Neutron Autoradiography)

  • 우기도;양창호;박희찬;이창희;심철무;장진성;김현경
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1074-1079
    • /
    • 2001
  • To study the distribution of boron and the boron effect for nucleation of graphite in high carbon steel, neutron induced autoradiography method is used. High carbon steel is easy to make the graphitization by addition of boron. It is easy to analysis of boron distribution using neutron radiography with neutron fluence of $1.9$\times${\times}10^{13}/cm^2$in the boron added high carbon steel. By the neutron induced autoradiography technique, it was found that the distribution of boron depended on boron content, graphitiging temperature and time. And by the analysis of secondary ion mass spectroscopy (SIMS) and electron probe micro analysis (EPMA), boron or boride were acted at nucleation site of graphite in high carbon steel.

  • PDF