• Title/Summary/Keyword: Ion Beam Mixing

Search Result 51, Processing Time 0.037 seconds

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF

Study on the Improvement of $TiSi_2$ film for Ti-SALICIDE Process Using Ion Beam Mixing and Rapid Thermal Annealing (Ion Beam Mixing과 급속열처리 방법을 이용한 Ti-SALICIDE용 $TiSi_2$ 박막 개선에 관한 연구)

  • 최병선;구경완;천희곤;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.168-175
    • /
    • 1992
  • The surface and interface morphology as well as the sheet resistance, and uniformity of TiSiz film are significantly improved and the lateral titanium silicide growth over the oxide spacer is minimized by the use of ion beam mixing and rapid thermal annealing in nitrogen ambient. In addition, TiSiz film formations on TiISi and TiISiOz system were also studied.

  • PDF

A calculation on the Metal-Film Mixing by Intense Pulse Ion Beam (IPIB)

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Wang, Y.G.;Xue, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.74-78
    • /
    • 2003
  • In this paper, we studied, by numerical calculation, a system, which was composed of metal-film and metal-substrate irradiated by IPIB with beam ion energy 250 keV, current density 10 to 250 A/$\textrm{cm}^2$. While the IPIB irradiation was going on, an induced effect named mixing occurred. In this case, metal-film and part of metal-substrate melted and mixed. The mixing state was kept as it was in melting phase due to the fast cooling rate. Our works were simulating the heating and cooling process via our STEIPIB program and tried to find proper parameters for a specific film-substrate system, 500 nmtitanium film coated on aluminum, to get best mixing results. The parameters calculated for such Ti-Al system were compared with the experimental results and were in good accordance to the experimental results.

AN EXPERIMENTAL STUDY OF THE EFFECTS OF ION BEAM HIKING ON CERAMO-METAL BONDING (이온선 혼합법이 도재와 금속의 결합에 미치는 영향에 관한 실험적 연구)

  • Hong, Joon-Pow;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.245-265
    • /
    • 1991
  • The purpose of this study was to observe the changes of the elemental transmission and bond strength between the metal and porcelain according to various kinds of ion beam mixing method. ion beam mixing of $meta1/SiO_2$ (silica), $meta1/Al_2O_3$(alumina) interfaces causes reactions when the $Ar^+$ was implanted into bilayer thin films using a 100KeV accelerator which was designed and constructed for this study. A vacuum evaporator used in the $10^{-5}-10^{-6}$ Torr vacuum states for the evaporation. For this study, three kinds of porcelain metal selected, -precious, semiprecious, and non-precious. Silica and alumina were deposited to the metal by the vacuum evaporator, separately. One group was treated by two kinds of dose of the ion beam mixing $(1\times10^{16}ions/cm^2,\;5\times10^{15}ions/cm^2)$, and the other group was not mixed, and analyzed the effects of ion beam mixing. The analyses of bond strength, elemental transmissions were performed by the electron spectroscopy of chemical analysis (ESCA), light and scanning electron microscope, scratch test, and micro Vickers hardness tests. The finding led to the following conclusions. 1. In the scanning electron and light microscopic views, ion beam mixed specimens showed the ion beam mixed indentation. 2. In the micro Vickers hardness and scratch tests, ion beam mixed specimens showed higher strength than that of non mixed specimens, however, nonprecious metal showed a little change in the bond strength between mixed and non mixed specimens. 3. In the scratch test, ion beam mixed specimens showed higher shear strength than that of non treated specimens at the precious and semiprecious groups. 4. In the ESCA analysis, Au-O and Au-Si compounds were formed and transmission of the Au peak was found ion beam mixed $SiO_2/Au$ specimen, simultaneously, in the higher and lower bonded areas, and ion beam mixed $SiO_2/Ni-Cr$ specimen, oxygen, that was transmitted from $SiO_2\;to\;SiO_2/Ni-Cr$ interface combined with 12% of Ni at the interface.

  • PDF

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

Study of the Structure Change on Ion-Beam-Mixed CoPt Alloys.

  • Son, J.H.;Lee, Y.S.;Lim, K.Y.;Kim, T.G.;Chang, G.S.;Woo, J.J.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.135-136
    • /
    • 1998
  • By the ion bombardment the original discrete layered structure is damaged and a uniformly mixed layer is formed by the intermixing of the films. Immediately after this dynamic cascade mixing a structure of this mixed layer is likely to be a mixture of randomly distributed atoms. Subsequently the mixed layered structure becomes a non-equilibrium structure such as the metastable pphase because the kinetic energies of the incident ions rappidly dissippate and host atoms within the collision cascade region are quenched from a highly energetic state. The formation of the metastable transition metal alloys using ion-beam-mixing has been extensively studied for many years because of their sppecific ppropperties that differ from those of bulk materials. in ion-beam-mixing the alloy or comppound is formed due to the atomic interaction between different sppecies during ion bombardment. in this study the metastable pphase formed by ion-beam-mixing pprocess is comppared with equilibrium one by arc-melting method by GXRD and XAS. Therfore we studied the fundamental characteristics of charge redistribution uppon alloying and formation of intermetallic comppounds. The multi-layer films were depposited on a wet-oxidized Si(100) substrate by sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr during depposition. These compprise 4 ppairs of Co and ppt layers where thicknesses of each layer were varied in order to change the alloy compposition.

  • PDF

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF