The protein-bound iodine-131, the concentration of iodine-131 in blood, and the excretion rate of I-131 through urine and feces were observed in nine Korean native goats, 3 months age, following administration of $3{\mu}C$ of I-131 per kg of body weight. No signiant differences were found due to sex and castration. 1. The average protein-bound iodine-131 conversion ratio of goats was 16.7% in 24 hours. In castrated group, the lowest proteinbound iodine-131 conversion ratio was observed. 2. The average concentration of iodine-131 in bleed, increased very rapidly by 2 hours(4.75%) and rapidly decreased within 6 hours(0.73%). 3. The average excretion rate of I-131 through urine was highest in 24 hours(19.00%) and decreased rapidly within 48 hours(5.32%). 4. The average excretion ration rate of I-131 though feces was highest in 24 hours(2.55%), and decreased slowly.
Jeong, Gwanjo;Lee, Kyungwoo;Kim, Bogsoon;Lee, Suwon;Lee, Jonggyu;Koo, Ami
Journal of Korean Society of Environmental Engineers
/
v.36
no.11
/
pp.747-752
/
2014
Iodine-131, an artificial radionuclide, mostly exists as iodide ion ($^{131}I^-$) and iodate ion ($^{131}IO_3{^-}$) in the water, and When a short time contacted, it could not be removed by poly aluminum chloride (PACl) and powdered activated carbon (PAC). Although the removal rate of iodine-131 was not related with turbidity of raw water, it showed linear relationship with contact time with PAC. With the mixture of PACl (24 mg/L or more) and PAC (40 mg/L or more), about 40% of iodine-131 could be removed. Iodine-131 could be removed little by sand filtration, but approximately 100% by granular activated carbon (GAC), both virgin-GAC and spent-GAC. Microfiltration process could remove little iodine-131 while reverse osmosis process could remove about 92% of iodine-131.
In order to study the mechanism of biosynthesis of thyroid hormones, radioactive iodine was injected into the rats and thyroid glands were removed. Iodine compounds hydrolyzed by pancreatin viokase were separated by paper chromatography and analyzed by radioautography. Radioautograms showed that the uptake of iodine starts immediately and forms diiodotyrosine through monoiodotyrosine. Evidence supported the possibility that diiodotyrosine is a precursor of thyrosine and triiodothyronine is a degradation product of thyroxine. The rat administered propylthiouracil showed inorganic iodine concentration activity, while the binding activity was prevented.
In iodine-131 labelling of iodocompounds such as tetrachloro-P-tetraiodo R-fluorescein, sodium orthoiodohippurate and a non-iodocompound, human serum albumin (HSA), the labelling rates and yields are accurately compared with each other. The reaction systems conducted for each compounds were different conditions: sodium iodide-$^{131}$ I containing reducing agent, sodium iodide-$^{131}$ I free from reducing agent, and sodium iodide-$^{131}$ I free from reducing agent but containing considerable amount of iodide-$^{131}$ I etc. The labelling yields were generally poor; 10% in the case of using sodium iodide-$^{131}$ I containing redoing agent, and 50~60% in the case of using sodium iodide-$^{131}$ I free from reducing agent but containing considerable amount of iodide-$^{131}$ I. However, fair yields were obtained in the case of using sodium iodide-$^{131}$ I free from reducing agent and mostly in the form of iodide-$^{131}$ I. The reaction entities involved in these reactions are also briefly discussed.
Iodine is one of important nuclides to be checked for radiation exposure after nuclear power facility accidents. After Chernobyl accident, it was observed that there is a greater amount of organic iodine in the atmosphere than inorganic iodine. In this study, we not only varied the amount of sample being exposed to $^{131}I$ and the duration of exposure to $^{131}I$ but also diluted the sample in distilled water and mixed the sample in kelp and liquid $^{131}I$ to measure and analyze the radiation detection levels. We concluded that the radiation levels were not high enough to be harmful to human body. The radiation from $^{131}I$ decreased over time, and we calculated the half life at 7-9 days. We found that the radiation from any sample containing $^{131}I$ was halved by up to 7days.
Neuroblastoma is one of the most common extracranial solid tumor of childhood, and treatment of refractory neuroblastoma remains a significant clinical problem. Iodine-131-metaiodobenzylguanidine ($^{131}I-MIBG$) therapy is an alternative approach to treat stage IV neuroblastoma. We report the palliative effect of $^{131}I-MIBG$ in three cases of relapsed neuroblastoma after autologous peripheral blood stem cell transplantation. $^{131}I-MIBG$ is an effective and relatively nontoxic palliative therapy resulting in reduction of pain and prolongation of survival.
53 patients with hyperthyroidism have been analyzed with special reference to therapeutic response to radioactive iodine ($^{131}I$) treatment. Mean effective half-life, 24 hour uptake rate and radiation dose of $^{131}I$ in hyperthyroid patients included in this study were respectively. 1. Mean effective half-life of $^{131}I\;was\;4.7{\pm}1.5$ days in the tracer dose and $5.0{\pm}1.5$ days in the therapeutic dose. 2. Mean 24 hour uptake rate of $^{131}I\;was\;72.7{\pm}11.1%$ in the tracer dose and $73.4{\pm}12.3%$ in the theapeutic dose. 3. Mean radiation dose of $^{131}I\;was\;5,319{\pm}2,648$ RAD as predicted and $5,692{\pm}2,843$ RAD as actual. A single dose of radioactive iodine treatment was satisfactory in 34 patients (radioiodine sensitive) and multiple doses of radioactive iodine treatments were required in 19 patients (radioiodine resistant). A radioiodine resistant group of patients with hyperthyroidism was distinctively characteristic in the following aspects. 1. Mean thyroid weight calculated in the resistant group ($63.9{\pm}14.0gm$) was significantly (p<0.01) greater than that of the sensitive group ($46.6{\pm}13.3gm$). 2. Mean 24 hour uptake rate of the tracer dose in the resistant group ($67.3{\pm}10.7%$) was significantly (p<0.01) lower than that of the sensitive group ($75.7{\pm}10.5%$). 3. Mean 24 hour uptake rate of the therapeutic dose in the resistant group ($68.5{\pm}13.7%$) was significantly (p<0.05) lower than that of the sensitive group ($76.1{\pm}10.9%$). 4. Mean predicted radiation dose, of $^{131}I$ in the resistant group ($3,684{\pm}1,745$ RAD) was significantly (p<0.01) lower than that of the sensitive group ($6,232{\pm}2,683$ RAD). 5. Mean actual radiation dose of $^{131}I$ in the resistant group ($4,100{\pm}1,691$ RAD) was significantly (p<0.01) lower than that of the sensitive group ($6,582{\pm}3,024$ RAD). 6. No significant difference was detected in terms of effective half-life of $^{131}I$ among the groups (p>0.05). 7. The average mean % difference of effective half-life, uptake rate and radiation dose measured following the tracer and therapeutic dose of $^{131}I$ were not statistically significant (p>0.05). Therefore effective half-life, uptake rate and radiation dose of the therapeutic dose of $^{131}I$ were readily predictable following the tracer dose of $^{131}I$. 8. It is concluded that the possibility of resistance to radioactive iodine treatment may be anticipated in patients with thyroid gland large in size and compromised $^{131}I$ uptake rate.
Monoiodobromosulfophthalein-$^{131}$ I (MIBSP-$^{131}$ I), one of the useful radiopharmaceuticals for liver function studies, has been prepared by a simple isotope exchange between the MIBSP and the molecular iodine-$^{131}$ I in phosphate buffer, pH 5.3. The pooled cold MIBSP was prepared by a normal iodination of BSP using iodine monochloride, and separated from the iodination mixture by applying a Sephadex LH-20 chromatography. At 10$0^{\circ}C$, the exchange rate was so fast that the reaction could be terminated in 5 min to show upto 95% yield. The final product could be obtained simply by further heating for about 5 min in a boiling water bath in the presence of a small amount of hydrogen peroxide, and subsequent pH adjustment and membrane filtration.
The evolution of radioiodine 131I from a sodium peroxide system as a function of time, temperature, and carrier gas (nitrogen) flow rate was studied. Virtually no iodine was volatilized at 25$0^{\circ}C$ and a very small amount, of the order of 10$^{-3}$ % per flour, at 63$0^{\circ}C$. Substantially greater amounts of iodine were volatilized at 7$25^{\circ}C$ and 83$0^{\circ}C$. The data are consistent with the hypothesis that the mechanism of transfer is distillation of sodium iodide, and that elemental iodine is not produced in this system.
Many radionuclides exist in normal environment and artificial radionuclides also can be detected. The radionuclides ($^{131}I$) are widely used for labeling compounds and radiation therapy. In Korea, the radionuclide ($^{131}I$) is produced at the Radioisotope Production Facility (RIPF) at the Korea Atomic Energy Research Institute in Daejeon. The residents around the RIPF assume that $^{131}I$ detected in environmental samples is produced from RIPF. To ensure the safety of the residents, the radioactive concentration of $^{131}I$ near the RIPF was investigated by monitoring environmental samples along the Gap River. The selected geographical places are near the nuclear installation, another possible location for $^{131}I$ detection, and downstream of the Gap River. The first selected places are the "front gate of KAERI", and the "Donghwa bridge". The second selected place is the sewage treatment plant. Therefore, the Wonchon bridge is selected for the upstream of the plant and the sewage treatment plant is selected for the downstream of the plant. The last selected places are the downstream where the two paths converged, which is Yongshin bridge (in front of the cogeneration plant). In these places, environmental samples, including sediment, fish, surface water, and aquatic plants, were collected. In this study, the radioactive iodine ($^{131}I$) detection along the Gap River will be investigated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.