• Title/Summary/Keyword: Iodine radioisotopes

Search Result 13, Processing Time 0.023 seconds

Research status for long term half-life PET radioisotopes in KIRAMS

  • Kim, Jung Young;Park, Hyun;Chun, Kwon Soo;An, Gwang Il
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • It is essential use of long term half life radioisotopes for positron emission tomography (PET) imaging study of biopharmaceuticals because most of biopharmaceuticals have long biological half-life. Some representative isotopes are $^{124}I$, $^{64}Cu$, $^{89}Zr$ and so on. These PET radioisotopes and their radiopharmaceuticals have recently received growing interest because of long half life and good imaging properties. Furthermore, $^{64}Cu$ and $^{89}Zr$ can be used in a number of radiopharmaceuticals due to its ease of conjugation to peptides and antibodies using the proper chelator. In recent years, since $^{124}I$ was first developed in 2005, we have been studied to develop an efficient method and procedure for producing these radioisotopes, and we have made considerable progress in production of long term half life radioisotopes. This review introduces the general production system, purification procedure, and several advances on targeting method for $^{124}I$ and $^{64}Cu$ in KIRAMS.

Korean-specific iodine S values for use in internal dosimetry

  • Tae-Eun Kwon;Yoonsun Chung;Choonsik Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4659-4663
    • /
    • 2023
  • The use of iodine S values derived using the International Commission Radiological Protection (ICRP) phantoms may introduce significant bias in internal dosimetry for Koreans due to anatomical variability. In the current study, we produced an extensive dataset of Korean S values for selected five iodine radioisotopes (I-125, I-129, I131, I-133, and I-134) for use in radiation protection. To calculate S values, we implemented Monte Carlo simulations using the Mesh-type Reference Korean Phantoms (MRKPs), developed in a high-quality/fidelity mesh format. Noticeable differences were observed in S value comparisons between the Korean and ICRP reference phantoms with ratios (Korean/ICRP) widely ranging from 0.16 to 6.2. The majority of S value ratios were lower than the unity in Korean phantoms (interquartile range = 0.47-1.28; mean = 0.96; median = 0.69). The S values provided in the current study will be extensively utilized in iodine internal dosimetry for Koreans.

Determination of Iodine Contents in Ten kinds of Frequently used Oriental Herb Medicinal Products for Cancer Patient (암환자에게 다빈도로 활용되는 한약제제 10종에 대한 요오드의 함량 분석)

  • Lee, Chang-Hee;Choi, Jung-Eun;Kim, Sun-Ha;Chung, Yong-Sam;Moon, Jong-Hwa;Yoo, Hwa-Seung
    • Journal of Korean Traditional Oncology
    • /
    • v.16 no.1
    • /
    • pp.41-53
    • /
    • 2011
  • Background and Objectives: Iodine is an essential constituent of the thyroid hormones associated with the growth and development of humans and animals as an inorganic nutrition. This element may be accumulated in human blood, tissues and body through the intake of foodstuffs, a beverage, a nutritional supplement and a medicine, among others. The aim of the research is to find out a better medicinal stuff for the thyroid cancer patient who required a low level of iodine diet. Methods: Neutron activation analysis (NAA) used for the iodine analysis is one of nuclear analytical techniques using radiation and radioisotopes and very useful as sensitive analytical technique for performing both qualitative and quantitative multi-elemental non-destructive analysis of major, minor and trace components in variety of environmental and biological materials. In this study, iodine contents in ten kinds of oriental herb medicinal products, which is frequently used to cancer patients are determined by using instrumental neutron activation analysis (INAA) at the HANARO research reactor. The samples prescribed are manufactured as powdered form for taking medicine easily. The analytical quality control is performed to assure an uncertainty of the measurement and to compensate the measured data using a biological certified reference material, NIST SRM 1572, Citrus Leaves. The measured value is $1.89{\pm}0.35mg/kg$, and the relative error is 2.88%, and relative standard deviation is 19 % due to high counting error by small counts of gamma ray spectrum. The standard deviations for other elements such as Cl, K, Mn and Na were in the range of 2 to 8%. Result: The level of iodine contents of Biki-huan, Chungryong-huan and Chungcho-huan, samples detected is less than 6 mg/kg except Hangam Plus sample (more than 210 mg/kg) and six samples were not detected. Iodine in the samples of Shoxiho-tang, Shopunghualhyl-tang, Shocungryong-tang, Banhasaxim-tang, Insampaedox-san and Myunyuk Plus were not measured, but possible level of content can be estimated from the detection limits. In addition, the concentrations of some major elements like Cl, K, Mn, Na, in the samples were determined with the detection limits. Conclusions: Most of samples showed low iodine contents of less than 6 mg/kg but it turned out that most of testing samples can be used to classify the level of iodine diet samples considering the recommended low level of iodine diet 50 ${\mu}g$/day, and a better medicinal stuff for the thyroid cancer patient can be found.

Radiological Accident and Acute Radiation Syndrome (방사선 사고와 급성 방사선 증후군)

  • Roh, Hyung-Keun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.9 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • In mass casualty situation due to radiological accidents, it is important to start aggressive management with rapid triage decisions. External contamination needs immediate decontamination and internal contamination should be treated with special expertise and equipment to prevent the rapid uptake of radionuclides by target organs. Acute radiation syndrome shows a sequence of events that varies with the severity of the exposure. More severe exposures generally lead to more rapid onset of symptoms and severe clinical findings. After the massive exposure, various systems of the body reflect their severe damages that can lead to death within hours or up to several months. The disease progression has classically been divided into four stages: prodromal, latent, manifest illness, and recovery or death. Three characteristic clusters of symptoms including the hematopoietic syndrome, the gastrointestinal syndrome and the cerebrovascular syndrome are all associated with the acute radiation syndrome. The standard medical management of the patients with a potentially survivable radiation exposure includes good medical, surgical and supportive measures. Specific treatment with cytokines and bone marrow transplantation should be considered. The management of internal contamination is much the same as the treatment of poisoning. The standard decontamination should be applied to reduce uptake, and the chelating agents can be administered to enhance the clearance of radioisotopes. Radioactive iodine ($^{131}I$) as one of the nuclear fission products can increase the incidence of thyroid cancer in children. Potential benefit of potassium iodide prophylaxis is greater especially in neonates, infants and small children.

  • PDF

An Experimental Study on Airborne Contamination and Decontamination for $Na^{131}I$ Solution ($Na^{131}I$에 의(依)한 오염도(汚染度) 및 오염제거(汚染除去)의 실험적(實驗的) 연구(硏究))

  • Chu, Sung-Sil;Park, Chang-Yun
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.112-117
    • /
    • 1984
  • A lot of radioisotopes are applied to medical fields. It's very important to measure the activities on airborne radioiodine discharged in air from $Na^{131}I$ solutions and from patients treated with radioiodine. Also surface decontamination is another one important problem to be completly solved in the isotope laboratory where there is always the possibility of radiation contamination. The Authors measured the activities on airborne radioiodine with RI collector and scintillation counter. 1. The mean accumulative activity of airborne radioiodine discharged into air from $Na^{131}I$ solution was measured as $1.3{\times}10^{-3}/hr$ rate, and the maximum value was $1.8{\times}10^{-3}/hr$. 2. Radioactivity rate per hour of airborne iodine discharged into air from patients treated with $Na^{131}I$ was measured as $6.2{\times}10^{-5}/hr$ at 8 hour after administration of radioiodine and decreased into $2{\times}10^{-6}/hr$ after 24 hour. 3. Metalic surfaces such as stainless steel or aluminum are decontaminated 5 to 6 times more rapidly than wood and concrete surfaces. 4. Decontamination with wet wiping with detergent was 9 to 10 times more rapidly than dry wiping method, but dry wiping was useful for the first step to prevent spreading and flowing from liquid radioactive materials.

  • PDF

Preparation of Radiopharmaceuticals through Arylthallium Ditrifluoroacetate Intermediate (Arylthallium ditrifluoroacetate를 중간체(中間體)로 하는 방사성의약품(放射性醫藥品)의 합성법(合成法))

  • Kim, You-Sun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1983
  • Amino acids such as L-tyrosine, L-histidine, and tryptophan, which bear an aromatic ring in the molecule, could successfully be labelled by radioactive iodine through arylthallium ditrifluoroacetate intermediate. Generally, the labelling reaction could proceed in a short labelling time(ca, 20 minutes) and resulted in a high labelling yields and purity of the labelled product. This procedure has, therefore, been proved to be effective as the labelling method of short labelling time and high specific activity. Labelling proteins such as oval albumin and human albumin could also be achieved in $34\sim48%$ net labelling yield by thallating them at the low temperature $(0\sim10^{\circ}C)$, whereas the labelled products were mainly composed of various denatured products by thallating them at the high temperature$(35\sim40^{\circ}C)$, though the radioactivity was highly retained in the labelled products. Uracil and hippuric acid could also be labelled in a short labelling time though their thallation required a prolonged heating procedure. It was proved that this procedure may be effective to label these compounds by short lived radioisotopes. The labelling yields were, however, lower than 30%.

  • PDF

Cu-64 as a Cancer Theranostics Agent

  • Kwang Il Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • Theranostics, a composite word of therapy and diagnosis, is known as personalized medicine and the concept of diagnosis and treatment at the same time. In nuclear medicine, it means performing both therapeutic and diagnostic radioisotope therapy using the same target molecule. The increased production and utilization of 64Cu opens a new era of theranostics. The studies introduced here have shown that 64CuCl2 and various compounds or biomolecules labeled with 64Cu are unique radiopharmaceuticals with physiological properties suitable for use as diagnostic and therapeutic agents. So far, these two abilities have been described only for radioactive iodine. Although 64Cu has complex chemical properties compared to other PET radioisotopes such as 68Ga, it has an appropriate half-life and enables high-quality PET images similar to 18F, which is an advantage in terms of diagnosis. In addition, since it also has therapeutic properties through the release of β- particles and Auger electrons by electron capture, radiopharmaceuticals using 64Cu stand for innovative radiopharmaceuticals for theranostic purposes. Therefore, based on the initial results obtained using 64Cu as a therapeutic agent, it is expected that additional research on the application of 64Cu will lead to a new era in the theranostics field.

Separation and Recovery for the Analysis of Radioiodine in RI Wastes (RI 폐기물 내 방사성요오드 분석을 위한 분리 및 회수)

  • Kang, Sang-Hoon;Han, Sun-Ho;Lee, Heung-N.;Jee, Kwang-Yong;Lee, In-Koo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Various kinds of RI wastes are discharged from licensed organizations of radioisotopes les such as hospitals and clinic organizations, educational organizations, research institutions, and public organizations. Radioiodines such as $^{125}I\;and\;^{131}I$ are radioisotopes mainly used in nuclear medicine and industry. A method for the determination of radioiodines in RI wastes has been applied to measure low level activity using acid decomposition method and HPGe gamma ray spectrometer. Prior to analysis of real samples, $^{131}I$ reference solution and 10 g of yellow tissue paper was added to flask in mantle and was heated in 100 mL of 0.4 N $K_2Cr_2O_7$ and 100 mL of 9 M $H_2SO_4$, and then distilled after adding 10 mL of 30% $H_2PO_3$ and 1 mL of 30% $H_2O_2$. The condensed iodine by circulator was extracted into $CCl_4$, then back-extracted into the aqueous phase with 10 mL of 5% $K_2SO_2$ solution. Finally, $^{131}I$ was measured at 364.48 keV using HPGe gamma ray spectrometer after precipitation and filtration. Chemical yield of three steps such as acid decomposition process, chemical separation process, and precipitation and filtration process was more han 94% respectively, MDA(Minimum Detectable Activity) of $^{131}I$ at this analytical condition was 0.6 Bq/g.

  • PDF

Studies on the Establishment of Tolerance Level of Radioactive Compounds in Livestock Feeds (가축 사료 중 방사성 물질 허용 기준 설정에 관한 연구)

  • Lee, Wanno;Ji, Sang-Yun;Kim, Jin Kyu;Lee, Yun-Jong;Park, Jun Cheol;Moon, Hong Kil;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.337-345
    • /
    • 2011
  • In order to provide an effective preparedness for a nuclear or radiological emergency happening in the domestic or neighborhood countries and to solve the vague fear of the people for the ingestion of radioactive livestock products, the establishment of national guideline level for radionuclides in feed is urgently necessary. This is because it is important to secure the safety and to manage the crisis in the agricultural, fishery and food sector by performing the effective safety control during and after nuclear incident. This study was performed to investigate the report cases of international organizations and foreign countries to set up a domestic control standard for managing radioactive substances that may be contaminated in animal feeds due to the nuclear power plant incident. In addition, an attempt was made to provide a useful reference that can help prepare a domestic control standard, using a coefficient that can consider the transfer into livestock through the intake of radioactive contaminated animal feeds. The standard radioisotopes investigated were confined to radioactive cesium ($^{137+134}Cs$) and iodine ($^{131}I$). Guideline level for the radionuclides was calculated by using the transfer coefficient factor and the maximum daily intake of animal feed provided by IAEA. For example, the maximum daily intake of animal feed was set as $25kg\;d^{-1}$ for dairy cows, $10kg\;d^{-1}$ for beef cattle, $3.0kg\;d^{-1}$ for pigs and $0.15kg\;d^{-1}$ for chickens. The result values for radioactive cesium were calculated as $8,696Bq\;kg^{-1}$, $4,545Bq\;kg^{-1}$, $1,667Bq\;kg^{-1}$ and $2,469Bq\;kg^{-1}$, respectively. The results for radioactive iodine showed the ranges between $741Bq\;kg^{-1}$ and $76,628Bq\;kg^{-1}$. These data can be utilized as a scientific reference for the preparation of a crisis management manual for the emergency control due to nuclear power plant accident in Korea and neighboring country. These results will contribute to establish the safe feed management system at national level as manual for responding the radioactive exposure of agricultural products and animal feeds, which are currently not established.

Alternative Immunossays

  • Barnard, G.J.R.;Kim, J.B.;Collins, W.P.
    • Korean Journal of Animal Reproduction
    • /
    • v.9 no.2
    • /
    • pp.133-139
    • /
    • 1985
  • An immunoassay may be defined as an analytical procedure involving the competitive reaction between a limiting concentration of specific antibody and two populations of antigen, one of which is labelled or immobillized. The advent of immunoassay has revolutionised our knowledge of reproductive physiology and the practice of veterinary and clinical medicine. Radioimmunoassay (RIA) was the first of these methods to be developed, which meausred the analyte with good sensitivity, accuracy and precision (1,2). The essential components of RIA are:-(i) a limited concentration of antibodies, (ii) a reference preparation, and (iii) an antigen labelled with a radioisotope (usually tritium or iodine-125). Most procedures invelove isolating the antibody-bound fraction and measuring the amount of labelled antigen. Good facilities are available for scintilltion counting, data reduction nd statistical analysis. RIA is undergoing refinement through:-(i) the introduction of new techniques to separate the antibody-bound and free fractions which minimize the misclassification of labelled antigen into these compartments, and the amount of non-specfic binding. (3), (ii) the development of non-extration for the measurement of haptens (4), (iii) the determination of a, pp.rent free (i.e. non-protein bound) analytes (5), and (iv) the use of monoclonal antibodies(6). In 1968, Miles and Hales introduced in important new type of immunoassay which they termed immunora-diometric assay (IRMA) based on t도 use of isotopically labelled specific antibodies(7) in a move from limited to excess reagent systems. The concept of two-site IRMAs (with a capture antibody on a solid-phase, and a second labelled antibody to a different antigenic determinant of the analyte) has enabled the development of more sensitive and less-time consuming methods for the measurement of protein hormones ovar wide concentration of analyte (8). The increasing use of isotopic methos for diverse a, pp.ications has exposed several problems. For example, the radioactive half-life and radiolysis of the labelled reagent limits assay sensitivity and imposes a time limit on the usefulness of a kit. In addition, the potential health hazards associated with the use and disposal of radioactive cmpounds and the solvents and photofluors necessary for liquid scientillation counting are incompatable with the development of extra-laboratory tests. To date, the most practical alternative labels to radioisotopes, for the measurement of analytes in a concentration > 1 ng/ml, are erythrocytes, polystyrene particiles, gold sols, dyes and enzymes or cofactors with a visual or colorimetric end-point(9). Increased sensitivity to<1 pg/ml may be obtained with fluorescent and chemiluminescent labels, or enzymes with a fluorometric, chemiluminometric or bioluminometric end-point. The sensitivity of any immunoassay or immunometric assay depends on the affinity of the antibody-antigen reaction, the specific activity of the label, the precision with which the reagents are manipulated and the nonspecific background signal (10). The sensitivity of a limited reagent system for the measurement of haptens or proteins is mainly dependent upon the affinity of the antibodies and the smalleest amount of reagent that may be manipulated. Consequently, it is difficult in practice to improve on the sensitivity obtained with iodine-125 as the label. Conversely, with excess reagent systems for the measurement of proteins it is theoretically possible to increase assay sensitivity at least 1000 fold with alternative luminescent labels. To date, a 10-fold improvement has been achieved, and attempts are being made to reduce the influence of other variables on the specific signal from the immunoreaction.

  • PDF