• Title/Summary/Keyword: IoT system

Search Result 1,921, Processing Time 0.034 seconds

Minimize the ZigBee RSSI noise using mean filter (Mean Filter 기반 ZigBee RSSI 노이즈 최소화 방안)

  • Jeong, Jae-won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.162-163
    • /
    • 2017
  • IoT 기술의 발달로 지능적 관계를 형성하는 사물 공간 연결망으로 다양한 산업분야에 활용되고 있으며, IoT 시스템을 구축하기 위한 무선 통신 기술들도 연구되고 있다. Zigbee는 대표적인 무선 통신 표준 기술로 IoT의 Smart Home, Smart Led와 같은 분야에서 활용되고 있다. Zigbee 장비의 commissioning 기법은 사용자를 고려한 IoT 환경에서는 해결해야 할 과제이며, RSSI를 통하여 각각의 장비를 식별돼야 할 필요성이 있다. 본 논문에서는 RSSI 신호세기를 필터를 통하여 정렬하는 Zigbee Commissioning 기법을 제안한다.

  • PDF

A Study on Predictive Preservation of Equipment Management System with Integrated Intelligent IoT (지능형 IoT를 융합한 장비 운용 시스템의 예지 보전을 위한 연구)

  • Lee, Sang-Deok;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2022
  • Internet of Things technology is rapidly developing due to the recent development of information and communication technology. IoT technology utilizes various sensors to generate unique data from each sensor, enabling diagnosis of system status. However, the equipment management system currently in effect is a post-preservation concept in which administrators must deal with the problem after the problem occurs, which could mean system reliability and availability problems due to system errors, and could result in economic losses due to negative productivity disruptions. Therefore, this study confirmed that edge controller control decision algorithms for more efficient operation of rectifiers in the factory by applying intelligent IoT (AIoT) technology and domain knowledge-based modeling for each sensor data collected based on this, outputting appropriate status messages for each scenario.

A Study on Lightweight Block Cryptographic Algorithm Applicable to IoT Environment (IoT 환경에 적용 가능한 경량화 블록 암호알고리즘에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • The IoT environment provides an infinite variety of services using many different devices and networks. The development of the IoT environment is directly proportional to the level of security that can be provided. In some ways, lightweight cryptography is suitable for IoT environments, because it provides security, higher throughput, low power consumption and compactness. However, it has the limitation that it must form a new cryptosystem and be used within a limited resource range. Therefore, it is not the best solution for the IoT environment that requires diversification. Therefore, in order to overcome these disadvantages, this paper proposes a method suitable for the IoT environment, while using the existing block cipher algorithm, viz. the lightweight cipher algorithm, and keeping the existing system (viz. the sensing part and the server) almost unchanged. The proposed BCL architecture can perform encryption for various sensor devices in existing wire/wireless USNs (using) lightweight encryption. The proposed BCL architecture includes a pre/post-processing part in the existing block cipher algorithm, which allows various scattered devices to operate in a daisy chain network environment. This characteristic is optimal for the information security of distributed sensor systems and does not affect the neighboring network environment, even if hacking and cracking occur. Therefore, the BCL architecture proposed in the IoT environment can provide an optimal solution for the diversified IoT environment, because the existing block cryptographic algorithm, viz. the lightweight cryptographic algorithm, can be used.

Medication Reminder System for Smart Aging Services Using IoT Platforms and Products

  • Sung, Nak-Myoung;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.107-113
    • /
    • 2017
  • In this paper, we propose a medication reminder system using IoT platforms and products to help old adults keep track of their medication schedule, one of 10 Korean instrumental activities in daily living (K-IADL). An interworking architecture based on the oneM2M standard platform is designed to allow various IoT products to be connected each other through interworking proxy entities. A prototype system for the medication reminder service is developed, which consists of a pair of off-the-shelf pill bottle and container box embedded with an NFC tag and reader respectively, three types of actuators including a LIFX LED lightbulb, Musaic speaker, Microsoft Band 2, and smartphone applications. The experiment shows that our medication reminder system can make alarms for old adults to take their pills appropriately considering where they are and when they have food inferred from data collected from sensors including ultrasonic sensor and rice cooker, fostering them to keep their medication routine.

IoT Healthcare Communication System for IEEE 11073 PHD and IHE PCD-01 Integration Using CoAP

  • Li, Wei;Jung, Cheolwoo;Park, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1396-1414
    • /
    • 2018
  • With the proliferation of the Internet of Things (IoT) healthcare devices, significant interoperability issue arises where devices use proprietary data transfer protocols. The IHE PCD-01 standard has been suggested for the exchange of healthcare data in ISO/IEEE 11073 PHD data model. However, the PCD-01 is not efficient to be used in the IoT environment. This is because the use of SOAP for PCD-01 may be too complex to be implemented in the resource-constrained IoT healthcare devices. In this paper, we have designed a communication system to implement ISO/IEEE 11073 and IHE PCD-01 integration using the IETF CoAP. More specifically, we have designed the architecture and procedures, using CoAP, to seamlessly transmit the bio-signal from the tiny resource-constrained IoT healthcare devices to the server in a standardized way. We have also built the agent, gateway, and PCD-01 interface at the server, all of which are using the CoAP as a communication protocol. In order to evaluate the performance of the proposed system, we have used the PCD data to be transmitted over CoAP, MQTT, and HTTP. The evaluation of the system performance shows that the use of CoAP results in faster transaction and lesser cost than other protocols, with less battery power consumption.

A Design of IoT based Automatic Control System for Intelligent Smart Home Network (지능형 스마트 홈네트워크를 위한 IoT기반 자동조절시스템 설계)

  • Shim, JeongYon
    • Journal of Internet of Things and Convergence
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • The Internet of Thing (IoT) will be a very important core technology to implement Intelligent Smart Home Network and it will take charge of an important role connected to Smart Phone, Cloud Computing in the Ubiquitous environment. In this paper, Internal Autonomous Regulation by human autonomic nervous system was studied and its core mechanism was applied to the design of IoT based Autonomous Regulation System for Intelligent Smart Home Network. We proposed an autonomous regulating mechanism in which the factors of Temperature, Humidity and Illumination are automatically adjusted as they communicate with the connected things.

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

Construction of IoT Environment for XMPP Protocol Based Medical Devices Using Powershell (Powershell을 이용한 안전한 XMPP 프로토콜 기반의 의료기기 IoT환경 구축 제안)

  • Park, Yeon-Jin;Lee, Kuen-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • MicroSoft Windows 10 IoT version, released in August 2015, successfully drew consumer interest by introducing the familiar Windows into the IoT market, and enabled an easier system construction of IoT web servers. Meanwhile, overdiagnosis has recently emerged as a controversy in medical society. Establishment of communication between IoT servers and medical devices will send treatment results to users and activate communication between hospitals, greatly reducing this problem. The IoT server, with its limited resources, utilizes lightweight protocols that do not generate traffic and are easy to use. This paper proposes IoT networks which will enable medical devices to easily provide ubiquitous environments to their users, through utilization of the lightweight Simple Service Discovery Protocol (SSDP) and the secure Extensible Messaging and Presence Protocol (XMPP).

Network Security Protocol Performance Analysis in IoT Environment (IoT 환경에서의 네트워크 보안 프로토콜 성능 분석)

  • Kang, Dong-hee;Lim, Jae-Deok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.955-963
    • /
    • 2022
  • The Internet of Things (IoT), combined with various technologies, is rapidly becoming an integral part of our daily life. While it is rapidly taking root in society, security considerations are relatively insufficient, making it a major target for cyber attacks. Since all devices in the IoT environment are connected to the Internet and are closely used in daily life, the damage caused by cyber attacks is also serious. Therefore, encryption communication using a network security protocol must be considered for a service in a more secure IoT environment. A representative network security protocol includes TLS (Transport Layer Protocol) defined by the IETF. This paper analyzes the performance measurement results for TLS version 1.2 and version 1.3 in an IoT device open platform environment to predict the load of TLS, a representative network security protocol, in IoT devices with limited resource characteristics. In addition, by analyzing the performance of each major cryptographic algorithm in version 1.3, we intend to present a standard for setting appropriate network security protocol properties according to IoT device specifications.

An Extensible Smart Home IoT System Based on Open Hardware Platforms (개방형 하드웨어 플랫폼 기반의 확장 용이한 스마트 홈 IoT 시스템)

  • Lee, Jin-hae;Park, Gwang-il;Shin, Jong-ha;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.369-377
    • /
    • 2016
  • Recently, many changes have been made to people's life patterns as the technological advances in the ICT industry. The fusion of smart phones and various IT technologies has brought people convenience and welfare. A typical example of such fusion is the smart home. However, the existing smart home systems are difficult to be changed or extended. So we design a new smart home system with extensibility that can easily adopt legacy appliances and be scaled up. Among a variety of smart home features, this paper deals with IoT Devices that are responsible for controlling power or transmitting and receiving sensing values, IoT Gateway that connects users and consumer electronics via Internet, and Smart Home Manager that monitors and controls these components in the proposed smart home system.