• Title/Summary/Keyword: IoT server

Search Result 364, Processing Time 0.032 seconds

Implementation of IoT Application using Geofencing Technology for Mountain Management (산악 관리를 위한 지오펜싱 기술을 이용한 IoT 응용 구현)

  • Hyeok-jun Kweon;Eun-Gyu An;Hoon Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.300-305
    • /
    • 2023
  • In this paper, we confirmed that an efficient sensor network can be established at a low cost by applying Geofencing technology to a LoRa-based sensor network and verified its effectiveness in disaster management such as forest fires. We detected changes through GPS, gyro sensors, and combustion detection sensors, and defined the validity size of the Geofencing cell accurately. We proposed a LoRa Payload Frame Structure that has a flexible size according to the size of the sensor information.

A Design of Industrial Safety Service using LoRa Gateway Networks (LoRa 게이트웨이 네트워크를 활용한 산업안전서비스 설계)

  • Chang, Moon-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.313-316
    • /
    • 2021
  • In the IoT(IoT: Internet of Things) environment, network configuration is essential to collect data generated from objects. Various communication methods are used to process data of objects, and wireless communication methods such as Bluetooth and WiFi are mainly used. In order to collect data of objects, a communication module must be installed to collect data generated from sensors or edge devices in real time. And in order to deliver data to the database, a software architecture must be configured. Data generated from objects can be stored and managed in a database in real time, and data necessary for industrial safety can be extracted and utilized for industrial safety service applications. In this paper, a network environment was constructed using a LoRa(LoRa: Long Range) gateway to collect object data, and a client/server data collection model was designed to collect object data transmitted from the LoRa module. In order to secure the resources necessary for data collection and storage management without data leakage, data collection should be possible in real time. As an application service, location data required for industrial safety can be stored and managed in a database in real time.

  • PDF

The Analysis of Efficient Disk Buffer Management Policies to Develop Undesignated Cultural Heritage Management and Real-time Theft Chase (실시간 비지정 문화재 관리 및 도난 추적 시스템 개발을 위한 효율적인 디스크 버퍼 관리 정책 분석)

  • Jun-Hyeong Choi;Sang-Ho Hwang;SeungMan Chun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1299-1306
    • /
    • 2023
  • In this paper, we present a system for undesignated cultural heritage management and real-time theft chase, which uses flash-based large-capacity storage. The proposed system is composed of 3 parts, such as a cultural management device, a flash-based server, and a monitoring service for managing cultural heritages and chasing thefts using IoT technologies. However flash-based storage needs methods to overcome the limited lifespan. Therefore, in this paper, we present a system, which uses the disk buffer in flash-based storage to overcome the disadvantage, and evaluate the system performance in various environments. In our experiments, LRU policy shows the number of direct writes in the flash-based storage by 10.7% on average compared with CLOCK and FCFS.

Distributing Board Monitoring System based on Internet of Things (사물인터넷 기반 수배전반 상태 모니터링 시스템)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.200-206
    • /
    • 2016
  • It is necessary to develop a real-time monitoring system for electric facilities, operating and managing system for the accident prevention of electrical demand facilities anytime, anywhere. In this paper, we propose the implementation of distributing board monitoring system based on Internet of Things(IoT). The proposed system is installed in existing distributing board that it can transmit status information of distributing board and control information through the cloud server and the wireless local area network. The distributing board monitoring system can monitor and control the condition of distributing board by system administrator. The results show that the margin of error was ${\pm}5%$ in performance evaluation.

Development of Real-time Environment Monitoring System Using 3G Integrated Environmental Sensors Based on AWS (AWS기반 3G 통합환경센서 모듈을 이용한 실시간 환경 모니터링 시스템 개발)

  • Chun, Seung-Man;Lee, Seung-Jun;Yun, Jang-Kyu;Suk, Soo-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • As indoor pollutants such as carbon dioxide and dust mainly affect the respiratory and circulatory systems, there is an increasing need for real-time indoor / outdoor environmental monitoring. In this paper, we have developed a real - time environmental monitoring system using the cloud-based 3G integrated environmental sensor module for environmental monitoring. A highly reliable environmental information monitoring system requires various IT technologies such as infrastructure (server, commercial software, etc.), service application software, security, and authentication. A real-time environment monitoring system based on cloud service that can provide reliable service satisfying these configuration requirements is proposed and implemented. It is expected that this system can be applied to various technologies such as indoor automatic window opening/closing system based on the Internet.

Disign of Unmanned Vehicle Control System with LoRa Network (LoRa망을 활용한 무인이동체 관제 시스템 설계)

  • Lee, Jae-Ung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.44-46
    • /
    • 2018
  • In this paper, we design a system that can control unmanned mobile objects through communication between unmanned mobile object and control server system using LoRa network which is a dedicated IoT network. It is more efficient when the unmanned mobile object performs the special work by installing the LoRa network applied to the unmanned mobile object control system from the small space house or office hospital to the factory. In this paper, we will discuss the design of a system that can improve the social utilization of unmanned mobile objects by making it possible to communicate the events that occur around other mobile objects from the simplification of the navigation path.

  • PDF

Development of Low Cost Cloud Server System using Node-Red based on Raspberry Pi (Raspberry Pi기반 Node-Red를 이용한 Low Cost 클라우드 서버 시스템 구현)

  • Lin, Zhi-Ming;Lee, Yang-weon;Kim, Chul-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.261-264
    • /
    • 2018
  • As the application of IoT has diversified, there is a growing need to store information of sensors on servers in real time. However, building servers and collecting data requires a lot of money to secure existing PCs and storage space. This paper presents an easy way to build a cloud system at a low cost. This system presents the process of simply proposing and implementing a cloud system using Raspberry which is open hardware and Node-Red which is open software.

  • PDF

Design and implementation of IoT platform for collecting and managing the SmartFactory environment information

  • Kim, SungJin;Ra, SangYong;Kim, HwanSeog;Choi, JaeHong;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.109-115
    • /
    • 2019
  • Smart Factory is a part of and a key point of the 4th industrial revolution. It performs optimization from the whole viewpoint, using comprehensive data of the post-process data by utilizing various sensors, controllers, and mobile devices beyond the existing factory automation level. In this paper, we design and implement an IoT platform that can detect the safety factors of the workers, the environmental factors of the factory, and real time monitoring at the control center, among the fields to implement smart factory. To accomplish this, we construct a monitoring device that provides sensor information control, server transmission of sensor information, and visualization of collected information. By using this system, it is possible to maintain the temperature and humidity for the optimum working environment in the factory. and also, By using the beacon, it is possible to measure the working time of the worker and trace the position.

Distributed Multi-Sensor based Laboratory Safety Management System (분산 다중 센서 기반 실험실 안전 관리 시스템)

  • Hwang, Doyeun;Kim, Hwangryong;Kim, Eunseong;Jung, Daejin;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.585-586
    • /
    • 2019
  • Recently, the systems for managing the labs provide services that can be managed in real time by using various sensors based on IoT. The system collects sensor data and transmits it to the server, identifies the dangerous situation, and sends operation commands to the devices. These systems have a centralized structure that slows data processing when managing multiple laboratories. To solve this problem, this paper proposes a system that manages laboratories in distributed processing environment to identify and manage risk situations. The sensor module is used to control the laboratory and to automatically identify and respond to the dangerous situation.

  • PDF

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.