• Title/Summary/Keyword: IoT product

Search Result 135, Processing Time 0.023 seconds

Implementation of Smart Shopping Cart using Object Detection Method based on Deep Learning (딥러닝 객체 탐지 기술을 사용한 스마트 쇼핑카트의 구현)

  • Oh, Jin-Seon;Chun, In-Gook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.262-269
    • /
    • 2020
  • Recently, many attempts have been made to reduce the time required for payment in various shopping environments. In addition, for the Fourth Industrial Revolution era, artificial intelligence is advancing, and Internet of Things (IoT) devices are becoming more compact and cheaper. So, by integrating these two technologies, access to building an unmanned environment to save people time has become easier. In this paper, we propose a smart shopping cart system based on low-cost IoT equipment and deep-learning object-detection technology. The proposed smart cart system consists of a camera for real-time product detection, an ultrasonic sensor that acts as a trigger, a weight sensor to determine whether a product is put into or taken out of the shopping cart, an application for smartphones that provides a user interface for a virtual shopping cart, and a deep learning server where learned product data are stored. Communication between each module is through Transmission Control Protocol/Internet Protocol, a Hypertext Transmission Protocol network, a You Only Look Once darknet library, and an object detection system used by the server to recognize products. The user can check a list of items put into the smart cart via the smartphone app, and can automatically pay for them. The smart cart system proposed in this paper can be applied to unmanned stores with high cost-effectiveness.

Under-Thread Sewing Yarn Sensing Monitoring System of Sewing Machine for Smart Manufacturing (스마트 제조를 위한 봉제기의 밑실 센싱 모니터링 시스템)

  • Lee, Dae-Hee;Lee, Jae-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The ICT concept has been introduced to realize a highly productive smart factory and respond to the demand for small quantity and mass production between textile processes. ICT convergence monitoring system that can produce high productivity textile products by improving product development period, cost, quality and delivery time through ICT based production and optimization of manufacturing process is needed. In this paper, we propose and implement a system design that senses the amount of remaining sewing material using a non-contact sensor that can be mounted on a sewing machine and displays it on a display using IOT-based LATTE-PANDA board.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

A Study on The Marketing Strategy of IoT (Internet of Things)-based Smart Home Service Companies Focusing on The Case of Xiaomi

  • Liang, Jinle;Kang, Min Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 2021
  • In the background of the rapid development of the IoT, smart home work is becoming more and more important to each science and technology company. Smart home provides a safe, comfortable, high-quality, high-performance smart home living space compared to general homes, and at the same time It is responding to the low-carbon, eco-friendly global trend. Growth drivers driving the smart home market are increasing the number of Internet users, increasing disposable income in developing countries, increasing the importance of remote home monitoring, and increasing the need for energy saving and low carbon. In 2013-2014, Xiaomi launched a series of smart routers and smart home hardware devices. In 2015, it announced the latest product of the Xiaomi Ecological Chain, the "Smart Home Package," and in 2016 launched the MIJIA brand to invest in various smart product companies. In 2017, Xiaomi announced a plan to build an open smart hardware MIOT platform. We investigated the management strategy of Xiaomi home smart service based on IOT. The management strategy was divided into cost lead strategy, differentiation strategy of Xiaomi home service, and AIOT strategy of Xiaomi smart home.

Development of web-based collaborative framework for the simulation of embedded systems

  • Yang, Woong;Lee, Soo-Hong;Jin, Yong Zhu;Hwang, Hyun-Tae
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.363-369
    • /
    • 2016
  • Cyber Physical System (CPS) and Internet of Things (IoT) are hot objects of interest as an extension of the embedded system. These interactive products and systems contain Mobile Devices which are most popular and used most frequently. Also these have been widely used from the control of the Nuclear Power Control System (NPCS) to IoT Home Service. Information & Communication Technology (ICT) topics of trend fused-complex current Information Technology (IT) and Communication Technology (CT) are closely linked to real space and virtual space. This immediately means the arrival of the ultra-connected society. It refers to a society in which various objects surrounding the human innovation and change in the social sector are expected through the connection between the data which are to be generated. In addition, studies of Tool-kit for the design of such systems are also actively pursued. However, only increased cooperation and information sharing between the physical object consists of a variety of machinery and equipment. We have taken into consideration a number of design variables of the high barriers to entry about the product. In this study, It has been developed a Web-based collaboration framework which can be a flexible connection between macroscopically virtual environment and the physical environment. This framework is able to verifiy and manage physical environments. Also it can resolve the bottlenecks encountered during the base expansion and development process of IoT (Internet of Things) environment.

Design and implementation of comb filter for multi-channel, 24bit delta-sigma ADC (다채널 24비트 델타시그마 ADC 용 콤필터 설계 및 구현)

  • Hong, Heedong;Park, Sangbong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.427-430
    • /
    • 2020
  • The multi-channel analog signal to digital signal conversion is increasing in the field of IoT and medical measurement equipments. It has chip area and power consumption constraints to use a few single or 2_channel ADC for multi_channel application. This paper described to design and implement a proposed comb filter for multi-channel, 24bit ADC. The function of proposed comb filter is verified by matlab simulation and the FPGA test board. It was fabricated using SK Hynix 0.35㎛ CMOS standard process. The performance and chip size is compared with the existing design method that uses integrator/differentiator and FIR construction. The proposed comb filter is expected to use the IoT product and medical measurement equipments that require multi-channel, low power consumption and small hardware size.

Implimentation of Smart Farm System Using the Used Smart Phone (중고 스마트폰을 활용한 스마트 팜 시스템의 구현)

  • Kwon, Sung-Gab;Kang, Shin-Chul;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1524-1530
    • /
    • 2018
  • In this paper, we designed a product that can prevent environmental pollution, waste of resources, and leakage of foreign currency by commercializing a green IT solution by merging a used smart phone with the IoT object communication technology for the first time in the world. For the experiment of the designed system, various performance and communication condition was experimented by installing it in the actual crop cultivation facility. As a result, when a problem occurs, the alarm sound and video notification are generated by the user's smart phone, and remote control of various installed devices and data analysis in real time are possible. In this study, it is thought that the terminal management board developed for the utilization of the used smart phone can be applied to various fields such as agriculture and environment.

Development of Fine Dust Analysis Technology using IoT Sensor (IoT 센서를 활용한 미세먼지 분석 기술 개발)

  • Shin, Dong-Jin;Lee, Jin;Heo, Min-Hui;Hwang, Seung-Yeon;Lee, Yong-Soo;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.121-129
    • /
    • 2021
  • In addition to yellow dust occurring in China, fine dust has become a hot topic in Korea through news and media. Although there is fine dust generated from the outside, the purchase rate of air purifier products is increasing as external fine dust flows into the inside. The air purifier uses a filter internally, and the sensor notifies the user through the LED alarm whether the filter is replaced. However, there is currently no product measuring how much the filter rate is reduced and determining the pressure of the blower to operate. Therefore, in this paper, data are generated directly using Arduino, fine dust sensor, and differential pressure sensor. In addition, a program was developed using Python programming to calculate how old the filter is and to analyze the wind power of the blower according to the filter rate by calculating the measured dust and pressure values.

A Study on Smart Factory Construction Method for Efficient Production Management in Sewing Industry

  • Kim, Jung-Cheol;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.61-68
    • /
    • 2020
  • In the era of the fourth industrial revolution, many production plants are gradually evolving into smart factories that apply information and communication technology to manufacturing, distribution, production, and quality management. The conversion from conventional factories to smart factories has resulted in the automation of production sites using the internet and the internet of things (IoT) technology. Thus, labor-intensive production can easily collect necessary information. However, implementing a smart factory required a significant amount of time, effort, and money. In particular, labor-intensive production industries are not automated, and productivity is determined by human skill. A representative industry of such industries is sewing the industry. In the sewing industry, wherein productivity is determined by the operator's skills. This study suggests that production performance, inventory management and product delivery of the sewing industries can be managed efficiently with existing production method by using smart buttons incorporating IoT functions, without using automated machinery.

Development of a Smart Supply-Chain Management Solution Based on Logistics Standards Utilizing Artificial Intelligence and the Internet of Things

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, the author introduces a supply-chain management (SCM) solution that connects suppliers, manufacturers, customers, and other companies within a transactional relationship to enable efficient inventory management and timely product supply, which ultimately maximizes corporate profits. This proposed solution exploits Fourth Industrial Revolution technologies, such as artificial intelligence (AI) and the Internet of Things (IoT), which provide solutions to complex management issues generated by the broader market. The goal of the current study was to develop an advanced and intelligent smart SCM solution that complies with logistics standards, to enhance the visibility, safety, and efficiency of a supply chain made up of manufacturers and suppliers. This smart SCM solution aims at maximizing corporate profits through efficient inventory management and timely supply of products, and solves the complex management problems caused by operating within a wide range of markets.