• Title/Summary/Keyword: IoT Vulnerability

Search Result 68, Processing Time 0.021 seconds

An Vulnerability Analysis and Countermeasures for Security in Outdoor Risk Management System based on IoT Technology

  • Jee, Sung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.85-92
    • /
    • 2020
  • Following the development of Internet of Things (IoT) technology, the scope of application of IoT technology is expanding to industrial safety areas that detect and prevent possible risks in outdoor environments in advance, away from improving the convenience of living in indoor environments. Although this expansion of IoT service provides many advantages, it also causes security problems such as data leakage and modulation, so research on security response strategies is being actively carried out. In this paper, the IoT-based road construction risk management system in outdoor environment is proposed as a research subject. As a result of investigating the security vulnerabilities of the low-power wide-area (LPWA, BLE) communication protocol applied to the research targets, the security vulnerabilities were identified in terms of confidentiality, integrity, and availability, which are the three major elements of information security, and countermeasures for each vulnerability were proposed. This study is meaningful in investigating and analyzing possible vulnerabilities in the operation of the IoT-based risk management system and proposing practical security guidelines for each vulnerability.

A Study on the Vulnerability Management of Internet Connection Devices based on Internet-Wide Scan (인터넷 와이드 스캔 기술 기반 인터넷 연결 디바이스의 취약점 관리 구조 연구)

  • Kim, Taeeun;Jung, Yong Hoon;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.504-509
    • /
    • 2019
  • Recently, both wireless communications technology and the performance of small devices have developed exponentially, while the number of services using various types of Internet of Things (IoT) devices has also massively increased in line with the ongoing technological and environmental changes. Furthermore, ever more devices that were previously used in the offline environment-including small-size sensors and CCTV-are being connected to the Internet due to the huge increase in IoT services. However, many IoT devices are not equipped with security functions, and use vulnerable open source software as it is. In addition, conventional network equipment, such as switches and gateways, operates with vulnerabilities, because users tend not to update the equipment on a regular basis. Recently, the simple vulnerability of IoT devices has been exploited through the distributed denial of service (DDoS) from attackers creating a large number of botnets. This paper proposes a system that is capable of identifying Internet-connected devices quickly, analyzing and managing the vulnerability of such devices using Internet-wide scan technology. In addition, the vulnerability analysis rate of the proposed technology was verified through collected banner information. In the future, the company plans to automate and upgrade the proposed system so that it can be used as a technology to prevent cyber attacks.

Vulnerability Analysis Model for IoT Smart Home Camera

  • Aljahdali, Asia Othman;Alsaidi, Nawal;Alsafri, Maram
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.229-239
    • /
    • 2022
  • Today's Internet of Things (IoT) has had a dramatic increase in the use of various daily aspects. As a consequence, many homes adopt IoT technology to move towards the smart home. So, the home can be called smart when it has a range of smart devices that are united into one network, such as cameras, sensors, etc. While IoT smart home devices bring numerous benefits to human life, there are many security concerns associated with these devices. These security concerns, such as user privacy, can result in an insecure application. In this research, we focused on analyzing the vulnerabilities of IoT smart home cameras. This will be done by designing a new model that follows the STRIDE approach to identify these threats in order to afford an efficient and secure IoT device. Then, apply a number of test cases on a smart home camera in order to verify the usage of the proposed model. Lastly, we present a scheme for mitigation techniques to prevent any vulnerabilities that might occur in IoT devices.

Analysis of Security Vulnerabilities for IoT Devices

  • Kim, Hee-Hyun;Yoo, Jinho
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • Recently, the number of Internet of Things (IoT) devices has been increasing exponentially. These IoT devices are directly connected to the internet to exchange information. IoT devices are becoming smaller and lighter. However, security measures are not taken in a timely manner compared to the security vulnerabilities of IoT devices. This is often the case when the security patches cannot be applied to the device because the security patches are not adequately applied or there is no patch function. Thus, security vulnerabilities continue to exist, and security incidents continue to increase. In this study, we classified and analyzed the most common security vulnerabilities for IoT devices and identify the essential vulnerabilities of IoT devices that should be considered for security when producing IoT devices. This paper will contribute to reducing the occurrence of security vulnerabilities in companies that produce IoT devices. Additionally, companies can identify vulnerabilities that frequently occur in IoT devices and take preemptive measures.

Institutional Improvements for Security of IoT Devices (IoT 기기의 보안성 확보를 위한 제도적 개선방안)

  • Lee, Donghyeok;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.607-615
    • /
    • 2017
  • Recently, IoT products with various functions are being developed. Through the combination of objects and information technology, convenient services that have not been imagined before are emerging. For a secure IoT environment, product security must be considered. However, the existing IoT products have various problems such as security vulnerability. In order to secure the security of IoT products, technical countermeasures as well as policy responses are needed. However, the legislation related to current IoT products has a limit to guarantee safety in IoT environment. In this paper, we analyze the limitations of the current legal system of IoT, and suggests ways to improve it.

Vulnerability analysis on the ARMv7 Thumb Architecture (ARMv7 Thumb Architecture 취약성 분석)

  • Kim, Si-Wan;Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1003-1008
    • /
    • 2017
  • The Internet of Things has attracted considerable research attention in recent years. In order for the new IoT technology to be widely used, the reliability and protection of information is required. IoT systems are very vulnerable to physical security due to their easy accessibility. Along with the development of SoC technology, many operating systems have been developed and many new operating systems have been introduced. In this paper, we describe the vulnerability analysis results for operating systems running on the ARMv7 Thumb Architecture hardware platform. For the recently introduced "Windows 10 IoT Core" operating system, I implemented the Zero-Day Attack by implanting the penetration code developed through the research into a specific IoT system. The virus detection test for the resulting penetration code was validated by referral to the "virustotal" site.

A Study on Security Vulnerability Management in Electric Power Industry IoT (전력 산업 IoT에서의 보안 취약점 관리에 관한 연구)

  • Lee, Sang-Gi;Lee, Sei-Yoon;Kim, Jeong-Chul
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.499-507
    • /
    • 2016
  • The era of IoT, which figures exchanging data from the internet between things is coming. Recently, former electric power energy policy paradigm, namely Supply side paradigm, is changing, because electric power energy consumption is rapidly increasing. As new paradigm for this limit, convergence of existing electric power grid and ICT(Information and Communication Technology) will accelerate intellectualization of electric power device, its operation system. This change brought opened electric power grid. Consequently, attacks to the national electric power grid are increasing. On this paper, we will analyze security threats of existing IoT, discuss security weakness on electric power industry IoT and suggest needed security requirements, security technology.

A Study on Systematic Firmware Security Analysis Method for IoT Devices (체계적인 IoT 기기의 펌웨어 보안 분석 방법에 관한 연구)

  • Kim, Yejun;Gim, Jeonghyeon;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.31-49
    • /
    • 2021
  • IoT devices refer to embedded devices that can communicate with networks. Since there are various types of IoT devices and they are widely used around us, in the event of an attack, damages such as personal information leakage can occur depending on the type of device. While the security team analyzes IoT devices, they should target firmware as well as software interfaces since IoT devices are operated by both of them. However, the problem is that it is not easy to extract and analyze firmware and that it is not easy to manage product quality at a certain level even if the same target is analyzed according to the analyst's expertise within the security team. Therefore, in this paper, we intend to establish a vulnerability analysis process for the firmware of IoT devices and present available tools for each step. Besides, we organized the process from firmware acquisition to analysis of IoT devices produced by various commercial manufacturers, and we wanted to prove their validity by applying it directly to drone analysis by various manufacturers.

A Study on IoT Devices Vulnerability and Security (IoT 디바이스 보안위협 및 대응방안 연구)

  • Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Numerous IoT devices are connected to a wireless network environment to collect and transmit data without time and space limitations, but many security vulnerabilities are exposed in these process. But IoT security is not easy to create feasible security standards and device authentication due to differences in the approach or implementation of devices and networks. However, it is clear that the improvement and application of the standard framework for enhancing the security level of the device is the starting point to help the most successful security effect. In this study, we investigate the confidentiality, integrity, availability, and access control implementation plans for IoT devices (which are the basic goals of information security), and standardized security evaluation criteria for IoT devices, and study ways to improve them.

Analysis of Security Vulnerability in U2U Authentication Using MEC in IoD Environment (IoD 환경에서 MEC를 활용한 U2U 인증에서 보안 취약점 분석)

  • Choi, Jae Hyun;Lee, Sang Hoon;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • Due to the recent development of the Internet of Things (IoT) and the increase in services using drones, research on IoD is actively underway. Drones have limited computational power and storage size, and when communicating between drones, data is exchanged after proper authentication between entities. Drones must be secure from traceability because they contain sensitive information such as location and travel path. In this paper, we point out a fatal security vulnerability that can be caused by the use of pseudonyms and certificates in existing IoD research and propose a solution.