• Title/Summary/Keyword: IoT Intelligent Service

Search Result 122, Processing Time 0.033 seconds

The Improvement Plan for Indicator System of Personal Information Management Level Diagnosis in the Era of the 4th Industrial Revolution: Focusing on Application of Personal Information Protection Standards linked to specific IT technologies (제4차 산업시대의 개인정보 관리수준 진단지표체계 개선방안: 특정 IT기술연계 개인정보보호기준 적용을 중심으로)

  • Shin, Young-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.1-13
    • /
    • 2021
  • This study tried to suggest ways to improve the indicator system to strengthen the personal information protection. For this purpose, the components of indicator system are derived through domestic and foreign literature, and it was selected as main the diagnostic indicators through FGI/Delphi analysis for personal information protection experts and a survey for personal information protection officers of public institutions. As like this, this study was intended to derive an inspection standard that can be reflected as a separate index system for personal information protection, by classifying the specific IT technologies of the 4th industrial revolution, such as big data, cloud, Internet of Things, and artificial intelligence. As a result, from the planning and design stage of specific technologies, the check items for applying the PbD principle, pseudonymous information processing and de-identification measures were selected as 2 common indicators. And the checklists were consisted 2 items related Big data, 5 items related Cloud service, 5 items related IoT, and 4 items related AI. Accordingly, this study expects to be an institutional device to respond to new technological changes for the continuous development of the personal information management level diagnosis system in the future.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

Intelligent Home appliances Power Control using Android and Arduino (안드로이드와 아두이노를 이용한 지능형 가전제품 전력 컨트롤)

  • Park, Sung-hyun;Kim, A-Yong;Kim, Wung-Jun;Bae, Keun-Ho;Yoo, Sang-keun;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.854-856
    • /
    • 2014
  • Has been released of make it possible to control the using for smart devices of a wide variety home appliances and electronics in smart appliances in accordance with the one person multi devices. In addition, is increasing rapidly for the number of the product on cleaning robot and refrigerator, air conditioning, TV, etc. these devices are using the implement up DLNA system. And at home and abroad for development and has provided with Iot and Alljoyn such systems. But currently using home appliances or electronic devices of there are a lot of the operating system non installed than the installed products. In addition, smart appliances do not use for user than buying existing electronic products a lot more. In addition, more occur for smart appliances of that do not use for the user on smart appliances rather than buying existing electronics. In this paper, Suggested and implemented for system of control such as smart devices to existed home appliance on not have an operating system, Using mobile device for want users to quantify the data to transfer from arduino board.

  • PDF

Worker Collision Safety Management System using Object Detection (객체 탐지를 활용한 근로자 충돌 안전관리 시스템)

  • Lee, Taejun;Kim, Seongjae;Hwang, Chul-Hyun;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1259-1265
    • /
    • 2022
  • Recently, AI, big data, and IoT technologies are being used in various solutions such as fire detection and gas or dangerous substance detection for safety accident prevention. According to the status of occupational accidents published by the Ministry of Employment and Labor in 2021, the accident rate, the number of injured, and the number of deaths have increased compared to 2020. In this paper, referring to the dataset construction guidelines provided by the National Intelligence Service Agency(NIA), the dataset is directly collected from the field and learned with YOLOv4 to propose a collision risk object detection system through object detection. The accuracy of the dangerous situation rule violation was 88% indoors and 92% outdoors. Through this system, it is thought that it will be possible to analyze safety accidents that occur in industrial sites in advance and use them to intelligent platforms research.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Analyses of Expert Group on the 4th Industrial Revolution: The Perspective of Product Lifecycle Management (4차 산업혁명에 관한 전문가그룹 분석: 제품수명주기관리의 관점에서)

  • Wongeun Oh;Injai Kim
    • Journal of Service Research and Studies
    • /
    • v.10 no.4
    • /
    • pp.89-100
    • /
    • 2020
  • The smart factory is an important axis of the 4th industrial revolution. Smart factory is a system that induces the maximum efficiency and effectiveness of production using the IoT and intelligent sensing systems. The product lifecycle management technique is a method that can actively reflect the consumer's requirements in the smart factory and manage the entire process from the consumer to the post management. There have been many studies on product lifecycle management, but studies on how to organize product lifecycle management knowledge domains in preparation for the era of the 4th industrial revolution were insufficient. This study analyzed the opinions of a group of experts preparing for the 4th industrial revolution in terms of product lifecycle management. The impact of the 4th industrial revolution on the detailed knowledge areas of product lifecycle management was investigated. The changes in product lifecycle management were summarized using a qualitative data analysis technique for a group of experts. Based on the opinions of experts, the product lifecycle management, which consists of a total of 30 detailed knowledge areas, was prepared to supplement or prepare for the 4th industrial revolution. This study investigates changes in product lifecycle management in preparation for the 4th industrial revolution in the knowledge domain of the existing defined product life cycle management. In future research, it is necessary to redefine the knowledge domain of product life cycle management suitable for the era of the 4th industrial revolution and investigate the perception of experts. Considering the social culture and technological change factors of the 4th industrial revolution, the scope and scope of product life cycle management can be newly defined.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

A Study on Cell-Broadcasting Based Security Authentication System and Business Models (셀 브로드캐스팅 보안 인증시스템 및 비즈니스 모델에 관한 연구)

  • Choi, Jeong-Moon;Lee, Jungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.325-333
    • /
    • 2021
  • With the rapidly changing era of the fourth industrial revolution, the utilization of IT technology is increasing. In addition, the demand for security authentication is increasing as shared services or IoT technologies are being developed as new business models. Security authentication is becoming increasingly important for all intelligent devices such as self-driving cars. However, most location-based security authentication technologies are being developed mainly with technologies that utilize server proximity or satellite location tracking, which limits the scope of their physical use. Location-based security authentication technology has recently been developed as a complementary replacement technology. In this study, we introduce location-based security authentication technology using cell broadcasting technology, which has a wider range of applications and is more convenient and business-friendly than existing location-based security authentication technologies. We also introduced application cases and business models related to this. In addition to the current status of technology development, we analyzed current changes in business models being employed. Based on our analysis results, this study draws the implication that technology diversification is necessary to improve the performance of innovative technologies. It is meaningful that it has found and studied advanced technologies other than existing location authentication methods and systems.

A Study on Human-Robot Interaction Trends Using BERTopic (BERTopic을 활용한 인간-로봇 상호작용 동향 연구)

  • Jeonghun Kim;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.185-209
    • /
    • 2023
  • With the advent of the 4th industrial revolution, various technologies have received much attention. Technologies related to the 4th industry include the Internet of Things (IoT), big data, artificial intelligence, virtual reality (VR), 3D printers, and robotics, and these technologies are often converged. In particular, the robotics field is combined with technologies such as big data, artificial intelligence, VR, and digital twins. Accordingly, much research using robotics is being conducted, which is applied to distribution, airports, hotels, restaurants, and transportation fields. In the given situation, research on human-robot interaction is attracting attention, but it has not yet reached the level of user satisfaction. However, research on robots capable of perfect communication is steadily being conducted, and it is expected that it will be able to replace human emotional labor. Therefore, it is necessary to discuss whether the current human-robot interaction technology can be applied to business. To this end, this study first examines the trend of human-robot interaction technology. Second, we compare LDA (Latent Dirichlet Allocation) topic modeling and BERTopic topic modeling methods. As a result, we found that the concept of human-robot interaction and basic interaction was discussed in the studies from 1992 to 2002. From 2003 to 2012, many studies on social expression were conducted, and studies related to judgment such as face detection and recognition were conducted. In the studies from 2013 to 2022, service topics such as elderly nursing, education, and autism treatment appeared, and research on social expression continued. However, it seems that it has not yet reached the level that can be applied to business. As a result of comparing LDA (Latent Dirichlet Allocation) topic modeling and the BERTopic topic modeling method, it was confirmed that BERTopic is a superior method to LDA.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.